變化微小,有如“breathe”般 - 構形的變化(conformational change)*,變化較顯著,與蛋白質的活性或功能有關 2. 蛋白質構形變化的例子酵素與受質,血紅素與O2與肌肉收縮時肌凝蛋白與肌動蛋白

 未經分離之蛋白質亦可被定量 如果純化對象是酵素,可取樣品溶液或組織萃取液進行催化活性分析。亦即當酵素存在下反應基質被轉換為產物之反應速率增加情形。  我們必須知道催化全反應之方程式、定量基質消失或 精氨酸產物生成之分析方法、酵素作用時是否需要輔因子如金屬離子或輔酶的參與、酵素活性與基質濃度之關係、最適 pH 值與酵素保持穩定與最高活性的溫度範圍。  酵素通常在其最適 pH 值與溫度 25~38℃ 範圍中 進行活性分析。同時所使用之基質濃度會較高,因為可以使實驗測得之催化反應初速度與酵素活性成正比。  活性(activity)是指溶液中的總酵素單位數  比活性(specific activity)則是每毫克總蛋白之酵素單位數  比活性可用以評估酵素純度,隨著純化步驟逐步提升,酵素完全純化後會達到最大恆定值(表3-5)。


絲纖維蛋白富含甘胺酸與甲胺酸(Ala),且每兩個胺基酸就有一個甘胺酸出現纖維狀蛋白因具有特殊的一級結構(特定的胺基酸組成與排列)而形成特殊構造,再次驗證Anfinsen等人對蛋白質結構的形成與結構功能關係的論點 1. 蛋白質的構形變化蛋白質分子為dynamic分子以球狀蛋白為例- 分子的振動,如胺基酸側鏈的擺動*等,變化微小,有如“breathe”般 - 構形的變化(conformational change)*,變化較顯著,與蛋白質的活性或功能有關 2. 蛋白質構形變化的例子酵素與受質,血紅素與O2與肌肉收縮時肌凝蛋白與肌動蛋白(Ca+2的角色) 3.

即O2與任何一個次單元的接合會加速O2與其他次單元的接合 - 波爾效應描述pO2與pH值對血紅素與O2接合的影響, pO2愈高,pH值愈高,血紅素被O2飽和(接合)的程度愈高,如在肺部,pO2與pH值均高,大部分血紅素均被O2飽和,而在組織,pO2低且pH值因代謝產物及 CO2而降低時,血紅素與O2的接合減弱,因而可因應組織的需求而釋出O2供利用,但相同的條件下, 雙曲線“S”型曲線 pH值對血紅素與O2接合的影響 肌紅蛋白不具有四級構造,其對O2的接合不具協同作用,也不受pO2或pH值的影響 - 血紅素與O2的接合尚可受到2,3-BPG (2,3-bis- phosphoglycerate)的調控,精氨酸此調控對胎兒的發育極為重要,成人的血紅素(HbA)的組成為α2β2, 2,3-BPG可接合至β次單元,使得成人血紅素對O2的 親和性降低,而胎兒血紅素(HbF)的組成為α2γ2,無 β次單元可與2,3-BPG可接合,不受2,3-BPG影響,對O2的親和性較成人血紅素高

 管柱的固定相是由經過特殊處理而具有特定大小孔洞或孔隙之膠體顆粒組成,大分子蛋白質因為無法進入膠體之孔隙中,會以較直接而快速的方式繞過膠體流經管柱。小分子蛋白質則因為會進入膠體孔隙中,因此需要花較長的時間才能通過管柱(圖3-18b)。 圖3-18(b) 顯示大小-排除層析法利用蛋白質大小之差異進行分離。胺基酸管柱之固相基質為具有特定孔隙大小之交聯聚合物,大分子蛋白質在其中移動的速度較小分子快。因為大分子無法進入膠體之孔隙中,會以較直接的方式穿過膠體流經管柱;小分子則因為會進 入膠體孔隙中,因此需要花較長的時間才能通過管柱。 圖3-18(b) 蛋白質純化常用的三種管柱層析方法。

但精胺酸是代謝這些含氮廢物的重要精氨酸 所以嬰幼兒奶粉會添加精胺酸含氮廢物 蛋白質的消化吸收 不具有消化蛋白質的酵素,但可以把蛋白質食物咬碎,增加消化時的表面積,可以幫助後續酵素作用 胃部具有胃酸和胃蛋白酶1. 胃酸會讓蛋白質變性,失去蛋白質的2、3級結構,以利後續消化 2. 胃蛋白酶會切特定位置的胺基3. 嬰兒具有凝乳酶 十二指腸是蛋白質主要的消化場所

留言

這個網誌中的熱門文章

最基本的 統御方程式(Governing Equation)包含質量、動量與 能量守恆方程式,說明如下

基因遺傳學之奧妙逐步解祕,終將開啟了㆟類另㆒扇窗。因此吾㆟更需了解胺基酸之作用生理,以期解開㆟類生存健康疾病之奧妙。 因此本文旨要探討:精胺酸生理生化作用暨基礎生物學。這包括:精胺酸在健康疾病所扮演之不同角色

團隊決定延期原本在 2014 年 2 月份舉行的以太幣預售。 2014 年 2 月對於以太坊是一個非常重要的月份