吾㆟已知在特殊情況㆘ ( 譬如:敗血症、創傷、成長 ),內因性可以合成之胺基酸,統稱為非必須性。後者對於㆟體尿素需求是不充足的。也因此,除非這些胺基酸存在於食物㆗,不正常的組織蛋白質
研究者可由每個新的純化步驟後,經電泳分析蛋白質色帶之減少情形評估整個蛋白質純化流程之進展。 再與經同一電泳膠體分離之已知分子量蛋白質標準品比較後,任一未知蛋白質均可由其在膠體上所在之位置計算出其概估之分子量(圖3-20)。 如果蛋白質有兩個或以上之次單元,則 SDS 電泳也會將這些次單元分離,胺基酸並在膠體中分別呈現出不同之色帶。 圖3-20 顯示蛋白質在 SDS 聚丙烯醯胺膠體電泳(SDS-PAGE)中之泳動率與其分子量大小有關。
蛋白質序列可供解讀地球上生命的歷史 演化資訊的複雜性,會以任何可能的方式儲存於蛋白質序列之中。 以一種特定蛋白質而言,對其活性重要的精氨酸殘基 會隨著演化時間保留下來,而較不重要的胺基酸殘基就有可能隨時間改變(即可能被其他胺基酸所取代),這些發生變化的殘基可以提供追蹤演化的重要資訊。 胺基酸的取代並非總是隨機的。在某些蛋白質的一級結構裡,為了保持蛋白質的正常功能,僅能容許特定精氨酸的取代。而有些蛋白質的胺基酸變異性會比其他蛋白質來得高。 基於上述及其他原因,蛋白質彼此之間的演化速率會有差異性。
在每一個純化步驟之後,酵素之活性(以酵素單位表示)與總蛋白質含量均會被獨立分析,兩者之比值即為比活性。 活性與比活性這兩個名詞的差異可用圖3-23 的兩個盛裝彈珠之燒杯加以說明。 兩個燒杯中裝有相同數目的紅色彈珠及不同數目的其他顏色彈珠,精氨酸若以彈珠表示蛋白質,則兩個燒杯所含有之活性(以紅色彈珠含量表示)相等;但右方燒杯所含之紅色彈珠佔整體比例較高,故其比活性較高。 圖 3-23 活性與比活性。對不是酵素之蛋白質而言,需要其他適當的定量方法
胺基酸簡介胺基酸基本結構是含㆒胺基 ( NH2 ) 以及㆒羧基 ( COOH ) 以及㆒氧原子連結 2 個碳原子。附屬部分 ( R ),稱之為副鍵,通常它表現出每㆒胺基酸獨特之功能及屬性。此項結構對於所屬精氨酸㆒體通用,僅有甘胺酸為同質異構。世㆖有超過 300 種胺基酸存在,但僅有 20 種存在於動物性蛋白質(甘胺酸除外)皆是左旋結構。傳統㆖胺基酸存於動物蛋白質並分為必須胺基酸及非必須胺基酸兩類 ( 見表㆒ )。必須胺基酸無法內因性合成因此在食物㆗攝取是必須的。另類非必須胺基酸意指可在㆟體內合成,此兩大群胺基酸對於尿素平衡以及正常組織生長及新陳代謝維持是必須的。飲食攝取以及身體本身合成胺基酸以利維持整體胺基酸含量。多餘量之胺基酸從尿量排除。若從皮膚、糞便排出過多之胺基酸,就會產生非蛋白合成代謝路徑之先前產物,產生不可逆的變化以及不可還原之氧化反應。食物胺基酸之不平衡供應會導致組織修復減緩的結果。然而過多攝取或特殊胺基酸存在會導致組織及器官毒性。吾㆟已知在特殊情況㆘ ( 譬如:敗血症、創傷、成長 ),內因性可以合成之胺基酸,統稱為非必須性。後者對於㆟體尿素需求是不充足的。也因此,除非這些胺基酸存在於食物㆗,不正常的組織蛋白質代謝終究會發生。而這些胺基酸通常基本㆖會被稱為〝必須的。也因此大部分胺基酸大體分為必須及非必須兩類。事實㆖,係有㆔種胺基酸 ( L-胺基㆛酸、L- ㆝門冬酸及 L-麩胺酸 ) ㆔者皆可經由胺基轉移作用反應來產生,此㆔種乃真正是非必須的
等電點交集(isoelectric focusing) 膠體電泳(gel electrophoresis) SDS-PAGE可用於估測蛋白質分子量 2D電泳 利用溶解度的方法- 鹽析法*利用非專一性吸附作用的方法- 活性碳 - 磷酸鈣利用專一性吸附作用的方法- 如抗體與抗原或酵素與受質間的專一性接合特性 - 親和力管柱層析* 鹽析法(salting out) 1. 一級結構是(各)多肽中胺基酸的組成與排列次序*2. 二級結構是多肽因連接各胺基酸的肽鍵(peptide bond)間產生氫鍵,而形成重複出現的特殊結構如α-螺旋與β-褶片 肽鍵的構造與特性- -C α -Co-N- C α -- 具部份雙鍵特性*,為一平面構造(amide plane, peptide plane),自由旋轉角度為Φ與Ψ 肽鍵因共振而無法自由旋轉, 具“部分雙鍵”特性 由Ramachandran plots預測的各種構造
留言
張貼留言