有轉譯後的修飾作用仍深具價值 蛋白質定序步驟*- 蛋白質純化,可利用蛋白質的大小、帶電特性、溶解度或與特定物質的吸附作用等 - 次單元的分離,可利用高鹽濃度或改變溶液的pH值- N端與C端胺基酸的定性分析
雙硫鍵的定位 如果蛋白質一級結構中有雙硫鍵存在,則它們會在定序完成後,以另一個步驟來決定。取原始蛋白質,先不打開雙硫鍵,直接以胰蛋白酶(Trypsin)切割。所得之胜肽片段與第一次胰蛋白酶切割片段比較。每一對雙硫鍵的存在會造成原有兩個片段消失,取而代之的是一條較長之片段。消失的片段代表原始多胜肽中被雙硫鍵聯結的區域。 由其他方法決定胺基酸序列 由於快速 DNA 定序法的發展、遺傳訊息的解碼以及 基因分離技術之開發,研究者現在已可對基因進行核苷酸定序,間接地決定產物多肽之胺基酸序列(圖3- 28),用來決定蛋白質與 DNA 序列的技術是互補的。當基因可取得時,對 DNA 定序比對蛋白質定序來得更快速且正確 圖3-28 顯示每個胺基酸是由 DNA 中的三個特定核酸序列進行編碼。 圖 3-28 DNA 與胺基酸序列間之對應。
四級結構是當具有生物功能的蛋白質*是由兩條或兩條以上的多肽(次單元)組成時,次單元在立體空間的相互關係 蛋白質具有四級構造的優點- 可增加結構安定性,遺傳物質能更有效利用,可形成功能或活性部位,有調節與協同的效應 四級結構或超分子結構的優點 5. 超分子結構(supermolecular organization)胺基酸是細胞內不同的蛋白質(具有三級或四級構造)因行使功能而產生交互作用的實際狀態
但一級構造的分析對研究蛋白質是否具有轉譯後的修飾作用仍深具價值 蛋白質定序步驟*- 蛋白質純化,可利用蛋白質的大小、帶電特性、溶解度或與特定物質的吸附作用等 - 次單元的分離,可利用高鹽濃度或改變溶液的pH值- N端與C端胺基酸的定性分析- 利用酵素或化學試劑的作用將多肽鏈分割成小片段,確保定序結果的正確性- 胺基酸自動定序 - 序列的重組- 雙硫鍵的定位*,可利用對角線電泳 N端胺基酸定性 FDNB PITC Edman降解反應 蛋白質定序過程 硫鍵的定位- Diagonal electrophoresis (對角線電泳) 其他的定序方法-
蛋白質與親和基的接合多經由非共價作用力,因此接合為一可逆的過程每個蛋白質與同一種親和基的接合可發生在分子內的一個或多個部位 - 如發生在多個部位時,與同一種親和基接合的能力可能相同或不同,因此產生了接合的協同性,此種關係稱為同質性效應,如血紅素與O2的接合 一個蛋白質分子內也可有不同種類的親和基接合部位- 不同親和基的接合部位在親和基接合時,會有相互溝通(cross-talk)的特性,此種關係稱為異質性 效應,如血紅素與O2的接合受2,3-BPG及波爾效應的影響3.
精氨酸是㆒種條件性必須胺基酸。它首先由德國舒茲及史坦茲在 1866 年以結晶型式首度被分離出來 2,3,10 年後精氨酸證實存在於動物組織㆗ 4,左旋精胺酸,對於年青哺乳類動物尿素平衡以及大幅度生長是絕對必須的 5。但對於年青健康小孩及成㆟ ( <40 ) 並非是絕對必須的 6,7。然而在特定嬰兒疾病㆗ (尤其在尿素循環系統酉每缺乏 ) 大部分是缺乏 L-精胺酸,皆會導致生長及發育遲緩 8,9。對於這些嬰兒 ( 尤其是鳥胺酸胺基㆙醯轉移酉每 ) 缺乏導致發育不良、行動遲緩的嬰兒及小孩使用精胺酸治療會改善發育情形 9。在特殊壓力情況㆘ ( 譬如:巨大創傷以及敗血症 ),血漿㆗精胺酸濃度是偏低的 ( 因為此種胺基酸被用來防止其他代謝路徑。而此種胺基酸內因性合成仍少;對於身體之需求量是不足夠 10 )。總之,胺基酸之新陳代謝尤其是精氨酸㆒氧化氮路徑對於㆟體健康與疾病之間扮演相當關鍵性角色。因此醫屆同仁有必要來㆒窺胺基酸新陳代謝之全貌,並且了解分子生物醫學之最新進展。 ㆓、精胺酸需求量暨食物來源㆟類精氨酸需求量多寡可用不同方式來測定。這些包括尿素氮平衡研究,血漿胺基酸之測量以及同位素追蹤測定,所有技術皆有其優缺點 11-13,不在本文討論 範圍。令㆟驚訝的是,㆟類維持正常生理運作功能需要多少胺基酸含量仍屬未
留言
張貼留言