腎臟合成精氨酸之主要限制因子是瓜胺酸之利用率 42。 富勒氏早在 1973 年在美國生理學雜誌發表老鼠動物實驗專文指陳腎臟在精氨酸合成之重要性 37。使用瓜胺酸 ( 放射線活性標記 ) 靜脈注射於動物
酸形成 ( Nucleotides synthesis )胺基酸治療 ( Amino acid therapy ) 表㆔:L-精氨酸對於荷爾蒙分泌之影響組織 荷爾蒙 胰臟 胰島素(insulin)昇糖素(glucagons)胰臟多胜月太(PP)生長激素釋放抑制因子(somatostatin) 腦㆘垂體 生長激素(GH)泌乳激素(prolactin)腎㆖腺 兒茶酚氨(catecholamines)表㆕:精氨酸灌注對於健康婦女生長激素之影響 前言自從〝㆒氧化氮〞觀念於 1998 年獲得諾貝爾醫學獎桂冠之後,精氨酸——㆒氧化氮路徑之神秘面紗就此掀開。
進一步抽取基因體 DNA 後,再根據 Sandström et al. (2001) 報告中所設計之universal 16S rDNA 引子對,10F:5’-AGTTTGATCATGGCTCAGATTG-3’、 1507R:5’- TACCTTGTTACGACTTCACCCCAG-3’ 進 行 增 幅,PCR 條 件 為 10X enzyme buffer, 250 µM dNTP, 250 nM primer pairs, 100 ng DNA, 0.25U Taq DNA polymerase (Dream Taq, Thermo Fisher Scientific Inc.),PCR 條件修改為 95° C, 5 mins, 35 cycles of 95° C, 30 s; 60° C, 30 s; 72° C, 1 min 30 s; 72° C, 10 mins 與最後冷卻至 4° C。 DNA gyrase subunit B (gyrB) 基因引子對,則是參考 Yamamoto et al. (1995) 設計 UP-1/Up-2R 引子對及定序使用 UP-1S:5’-GAAGTCATCATGACCGTTCTGCA-3’、 UP-2Sr:5’-AGCAGGGTACGGATGTGCGAGCC-3’, 其 PCR 條件為如上述,PCR 條件則根據文獻設定為 95° C, 5 mins, 35 cycles of 95° C, 30 s; 60° C, 1 min; 72° C, 2 mins; 72°C, 10 mins 與機器最後冷卻至4°C。將PCR 產物進行gel elution 套組回收後,所得 PCR 產物送交源資國際生物股份有限公司 (Tri-I biotech Inc. Taichung, Taiwan)進行定序, 解序結果以美國生物技術資訊中心 (National Center for Biotechnology Information, NCBI) 網站所登錄基因資料庫進行比對。 二、三合一微生物肥料之調製MLBV19-3 精氨酸菌株經由本場測試出最適化發酵條件與配方後,委外生產高濃度之菌粉,並調製適合蔬果類作物生長之特殊胺基酸配方及混合化學肥料( 由產學合作廠商: 臺灣肥料股份有限公司生產提供),開發成兩種產品:(1) 生長肥 (AG) 成分為氮:29%、磷:9.5%、鉀:6.5%,供前期營養生長期使用;(2) 結果肥 (AF) 成分為氮: 3.5%、磷:8.5%、鉀:19%,供後期開花結果期使用,生產樣品各 100 公斤提供後續作物田試驗所用 ( 內含 MLBV19-3 芽孢桿菌菌數為 1 × 108 CFU/g)。三、三合一微生物肥料於青椒與胡瓜先期測試試驗田土壤性質分析如 ( 表一 ),定植前施用燕子牌十全基肥有機質肥料 ( 臺益工業股份有限公司,氮:3.8%、磷:2.8%、鉀:3.5%、有機質:72%),依據每公頃推薦用量:12,000 公斤;試驗採單因子,完全逢機區集設計 (RCBD),A 處理:三合一微生物肥料稀釋 500 倍、B 處理:三合一微生物肥料稀釋 1,000 倍、C 處理:三合一微生物肥料稀釋 2,000 倍、D 處理:化學肥料稀釋 1,000 倍之對照組 (CK1)、 E 處理:施用水之對照組 (CK2) 等 5 處理、共 4 重複,每重複共 10 株;生長期每 2 周使用生長肥 (AG)1 次共 3 次,開花期後即每 2 周使用結果肥 (AF) 1 次同樣共 3 次
此反應需要粒腺體酉每尤其是胺㆙醯磷酸合成酉每 ( I ) 34。而胺㆙醯磷酸與左旋鳥胺酸形成瓜胺酸。㆒旦瓜胺酸形成,後者從粒腺體進入細胞漿質,並藉由與㆝門冬胺酸結合形成精氨㆜㆓酸鹽。而精氨㆜㆓酸鹽經過水解產生左旋精氨酸。它經由溶解酉每亦可產生㆜烯㆓酸鹽。尿素循環之最後㆒步是左旋精氨酸經由精氨酸酉每轉化為尿素及 L-鳥胺酸。肝臟體內精氨酸酉每活性相當高經由尿素循環以可使氨素很快的去毒性 35。很重要的是吾㆟必須認知精氨酸酉每分佈於不同組織當㆗。而尿素循環㆗其他酉每並非如此。藉此機轉所產生的尿素經過循環到達腎臟並且排出。但是鳥胺酸會轉送回去經過粒腺體膜啟動再循環,如圖㆒所示。 2. 腎臟精氨酸之合成動物實驗已經證實腎臟在左旋胺基酸之合成扮演相當重要的角色。在肝臟㆗所製造之精氨酸其功能為主要的媒介 ( ㆗間物質 ) 以及在尿素循環㆗為氮素供應 者角色。因此肝臟需要大量的精氨酸酉每 36。若是肝臟製造過量的瓜胺酸,則後者會被運送到腎臟作為左旋精氨酸合成之前身 37。然而左旋瓜胺酸㆒為著腎臟精氨酸合成是腸內細胞。大約有 8 至 12%的麩胺酸及麩胺在腸子新陳代謝轉換成為左旋瓜胺酸、鳥胺酸及脯氨酸 38。後㆔者會再進入循環。而瓜胺酸會被腎臟吸收 35 ( 圖㆓ )。然而腎臟缺乏或含有少量之鳥胺酸胺基㆙醯轉移酉每 ( 其他組織很少,肝臟例外 )。因此它不能有效的將鳥胺酸轉化為瓜胺酸 39。腎臟的生化環境特別是精氨酸活性低,是有利於精氨酸之合成 40,41。尤有進者,精氨酸合成酉每是位於腎臟之皮質。而 85%之精氨酸是位於腎臟酉每質 41。腎臟合成精氨酸之主要限制因子是瓜胺酸之利用率 42。 富勒氏早在 1973 年在美國生理學雜誌發表老鼠動物實驗專文指陳腎臟在精氨酸合成之重要性 37。使用瓜胺酸 ( 放射線活性標記 ) 靜脈注射於動物 ( 不管有無功能之腎臟 ),接㆘來評估進入組織蛋白之含量。結果發現只有功能好的腎臟能將精氨酸溶入組織之蛋白質內。除了肝、腎兩器官是主要精氨酸合成所在㆞,在其他器官組織裡面,包括血管的內皮以及腦部左旋精氨酸皆可在㆖述兩㆞方合成。合成之主要元素為㆔種胺基酸:L-精氨酸、甘胺酸及 L-㆙硫胺酸。在此路徑合成當㆗,精氨酸為醯胺 ( amide ) 供給者。使甘胺酸得以醯胺基化形成胍基 ㆚酸鹽(Guanidimoacetate ) 以及 L-鳥胺酸 49。㆘步反應包括胍基㆚酸鹽㆙基化產生㆙基之供應者,S-腺性㆙硫胺酸。最後步驟導致肌酸與 S-腺性同胱氨酸形成 49。動物實驗㆗飲食添加 L-精氨酸或甘胺酸皆顯示可導致生長及肌酸形成增加。尤有進者,精氨酸與甘胺酸合併使用效果將有加強作用。在健康㆟服用相當大量的精氨酸及甘胺酸後,則肌酸及肌酸酐於血漿< 尿液㆗大量增加。這些先驅研究明顯指陳:口服精氨酸或甘胺酸可使血漿㆗肌酸及肌酸酐明顯增加,但尿液並無明顯增加。推測是經由骨骼肌肉吸收所導致。但此種機制仍尚待進㆒步研究證實。總之,精氨酸在腎臟肌酸< 肌酸酐代謝㆗扮演主要角色,自不待言。 六、精胺酸與聚胺 ( polyamine ) 合成精胺酸是聚胺 ( 包括精素與胺基酸 ) 生化合成之前身。聚胺是低分子量物質,幾乎可發現於所有細胞。聚胺如何形成早在 1981 年威廉堯許等學者已歸納出聚胺形成之來龍去脈 43,本文僅擇要說明。 在哺乳動物細胞內,聚胺合成之前身之㆒乃是左旋鳥胺酸。
胺基酸序列的決定方法:將多肽以已知會切割特定肽鍵之試劑片段化成小胜肽;以自動化的艾德曼降解流程決定每個片段的胺基酸序列;藉由不同切割方法產生之胜肽片段的重複序列決定出各片段在原始蛋白質中之順序。蛋白質序列也可以由其相對應基因之 DNA 核苷酸序列推衍而得。 小分子蛋白質與胜肽(至多100個胺基酸殘基)可用 化學方法合成。合成胜肽是以一端固定在固相擔體上,由另一端依序加上一個個的胺基酸殘基。 3.5 蛋白質序列與演化Protein Sequences and Evolution 每一種蛋白質的功能決定於其三度空間結構,而此三度空間結構則大部分由其一級結構決定。 由蛋白質序列所傳達的生化資訊,主要侷限於對蛋白質結構與功能的瞭解。 當以不同角度探討時,蛋白質序列將能告訴我們蛋白質是如何演化的,甚至這個星球上的生命是如何演化的。
人類腎臟結構具有很細的血管網絡,這些結晶就容易堵住腎絲球, 導致急性腎衰竭毒奶事件為什麼新聞提到的受害者都是嬰幼兒?1. 嬰幼兒的主食為奶粉 2. 嬰幼兒的腎臟還在發育中,胺基酸因此較容易受損看完食安的議題來講比較輕鬆的吧 為什麼冷凍解凍的肉會丌好吃冷凍速度越慢越容易破壞肉的組織 冷凍的溫度變化25度0 度-5 度-20 度超過30分鐘
留言
張貼留言