麩醯胺酸、麩胺酸、天門冬胺酸和天門冬醯胺酸 (Gln,Glu,Asp 和 Asn),先在 TCA 循環(tricarboxylic acid cycle) 中衍生自 α -酮戊二酸和草醯乙酸,再通過各種生化過程轉化所有其他胺基酸。研究指出萵苣施用 9 mmol /L 甘胺酸

 部分肌酸量是來自於食物 48。其餘的從肝、腎、胰臟內因性生成。其來源有:精胺酸、甘胺酸以及㆙硫胺酸。 在整個合成路徑㆖,精胺酸作為㆒醯胺供應者,將精氨酸基轉移形成胍基㆚酸鹽以及鳥胺酸 49。㆘㆒步驟乃是㆙基與胍基㆚酸鹽結合利用㆙基供應形成 S-腺性㆙硫胺酸。後者形成肌酸酐以及 S-㆙基同胱氨酸 49。 動物食物㆗供給精氨酸以及甘胺酸可造成組織生長以及肌酸酐合成。尤有進者,若兩者同時給予其效果更為加成。對於健康㆟若給予甘胺酸及精氨酸,則可證實血漿㆗肌酸酐及肌酸會大量增加,但尿㆗排除量 ( 肌酸酐< 肌酸 ) 並不增加。顯示出增加的肌胺酸形成乃是由肌肉吸收。更多的研究仍是必須的,以利證實此種效應及機轉。 八、精氨酸與嘧啶合成胺基酸磷酸是由肝臟兩種酉每合成,㆒是胺㆙基磷酸合成酉每 ( CPSI )( 第㆒型 ) 存在於粒腺體以及肝細胞細胞漿質之胺㆙基磷酸合成酉每 ( CPSII ) ( 第㆓型 )。由第㆒型 CPSI 產生之胺㆙基磷酸乃是用來尿素合成 50,由第㆓型 CPSII乃是與嘧啶合成有關,使用麩胺為尿素氮的來源 51。然而,某些研究指陳 80%以㆖之胺㆙基磷酸最終形成嘧啶,大部分是從粒腺體所衍生 52。 胺㆙基磷酸合成發生後緊接著是㆒系列反應直至乳清酸形成 ( 圖㆕ )。再接㆘來為脫羧基作用 ( Decarboxylation ),接著加入核 酸磷酸以及磷酸原子。最後導致核酉每酸 ( 嘧啶核 ) 形成,後者用於 DNA 以及 RNA 之形成 ( 去氧核醣核酸之形成 )53。 九、精氨酸與㆒氧化氮合成精氨酸經由㆒氧化氮合成酉每作用產生瓜胺酸及㆒氧化氮 ( 圖五 )


胱胺酸殘基其中一側的肽鍵以艾德曼降解法打斷時,仍可能藉由其雙硫鍵聯結到另一條多肽上。雙硫鍵也會干擾多肽以化學或酵素方法切割的過程。兩種將雙硫鍵不可逆打斷的方法如圖3-26 所示。 圖 3-26 顯示為兩種常用的方法: 胺基酸以過氧甲酸 (performic acid)處理可將胱胺酸氧化成兩個磺基丙胺酸殘基;以二硫蘇糖醇(dithiothreitol)處理則可將胱胺酸還原成兩個半胱胺酸殘基,再進一步以碘乙酸(iodoacetate)將反應性強的游離硫醇基進行乙基化反應,以避免其再次氧化回復形成雙硫鍵構造。 圖 3-26 打斷蛋白質中之雙硫鍵。切割多肽鏈 有幾種方法可用來片段化一條多肽鏈。

苗栗地區胡瓜種植面積為 95 公頃、產量達 1,618 公噸,番茄種植面積 43 公頃、產量達 637 公噸,青椒種植面積 18 公頃、產量達 157 公噸。此外,國內草莓生產面積約 509 公頃,產 量約 9,1412 公噸,主要產地包括苗栗、南投、新竹等縣,其中苗栗縣生產面積 451公頃,約占 88.6%,為最重要之產區 ( 農業統計年報,110);草莓與番茄屬於高經濟價值作物,市場價值除產量外,品質與甜度同樣為消費者所重視。隨著環保意識抬頭與安全農產品觀念的提升,對於友善環境及食品安全的重視日與俱增,為改善長期使用化肥養分容易固定於土壤中,造成浪費資源之外更會破壞土壤,最終造成減產、土壤板結、鹽鹼化等問題( 朱等,2021),以生物性農業資材替代部分傳統化學肥料,即成為農業生產中受重視的課題。 「微生物肥料」係指人工培養之微生物製劑,在土壤中利用活體生物之作用以提供作物營養分來源,增進土壤營養狀況或改良土壤之理化、生物性質,藉以增加作物產量及品質者。因此,微生物肥料管理法規明訂微生物肥料「係指其成分含具有活性微生物或休眠孢子,如細菌 ( 含放線菌類 )、真菌、藻類及其代謝產物之特定製劑,應用於作物生產具有提供植物養分或促進養分利用等功效之微生物物品」( 楊,2010)。微生物施入土壤,容易受土壤理化性質影響其活性,為維持微生物活性,土壤需有足夠有機質及適宜的土壤水分、空氣、溫度、酸鹼度,( 曾等, 2014)。微生物肥料能提升作物養分吸收能力,因此在肥料減量下,能達到作物施用全量肥料的效果。但是如果土壤養分不平衡,缺少的養分將成為作物生長限制因子,必須補充缺少的養分,維持土壤養分平衡,避免養分供應成為限制因子 ( 蔡, 2019)。 胺基酸代謝是果實發育的核心, 像是丙胺酸與乙酯形成有關 (Perez et al., 1992),苯丙胺酸和胺基酸會通過莽草酸途徑生物合成花青素苷和類黃酮的前體; Galili et al. (2008) 指出四種核心胺基酸,麩醯胺酸、麩胺酸、天門冬胺酸和天門冬醯胺酸 (Gln,Glu,Asp 和 Asn),先在 TCA 循環(tricarboxylic acid cycle) 中衍生自 α -酮戊二酸和草醯乙酸,再通過各種生化過程轉化所有其他胺基酸。研究指出萵苣施用 9 mmol /L 甘胺酸 4 週,雖不會增加鮮重,但可增加花青素、維生素 C、黃酮類之營養含量 (Yang et al., 2018);而草莓定植後 30 天施用 500 µM 的精胺酸會提升品質 ( 總糖、還原糖、有機酸、花青素苷、酚類、維生素 C) 和產量 ( 第一、二期單株總產量 ) Fariba et al. (2017)。 微生物肥料可以改良土壤的微生物環境,增加土壤生物菌量,改善土壤中的一些固定營養元素,促進農作物根部對養分的吸收 ( 曾,2014),近年來受農委會高度重視,農糧署補助農民購買微生物肥料,補助金額為售價二分之一、每公頃最高可達 5,000 元,本文進一步開發適合蔬果類作物營養健康之胺基酸微生物肥料,並測試其使用方法與應用效果,期望未來能商品化以提供農民新型生物性資材之選擇。 材料與方法一、芽孢桿菌菌種鑑定本研究自苗栗縣大湖鄉之草莓根圈土壤,分離篩選出一株生長快速、並能產生內生孢子之MLBV19-3 菌株,

 圖3-21 顯示利用蛋白質之等電點差異進行分離。  先添加適當兩性電解質以製備 pH 值穩定均勻之膠體,胺基酸待測蛋白質混合樣品則置入膠體中之樣品槽,通以電流後各種蛋白質則進入膠體並開始緩慢移動;當移動到與其 pI 值相同之 pH 值才停止。 圖 3-21 等電焦集法。 表 3-6 一些蛋白質之等電點  將等電焦集法與 SDS 電泳組合而成之實驗流程稱為二維電泳(two-dimensional electrophoresis)。  此方法用於分析複雜蛋白質混合物時可大幅提高其解析度(圖3-22)。

等電點交集(isoelectric focusing) 膠體電泳(gel electrophoresis) SDS-PAGE可用於估測蛋白質分子量 2D電泳 利用溶解度的方法- 鹽析法*利用非專一性吸附作用的方法- 活性碳 - 磷酸鈣利用專一性吸附作用的方法- 如抗體與抗原或酵素與受質間的專一性接合特性 - 親和力管柱層析* 鹽析法(salting out) 1. 一級結構是(各)多肽中胺基酸的組成與排列次序*2. 二級結構是多肽因連接各胺基酸的肽鍵(peptide bond)間產生氫鍵,而形成重複出現的特殊結構如α-螺旋與β-褶片 肽鍵的構造與特性- -C α -Co-N- C α -- 具部份雙鍵特性*,為一平面構造(amide plane, peptide plane),自由旋轉角度為Φ與Ψ 肽鍵因共振而無法自由旋轉, 具“部分雙鍵”特性 由Ramachandran plots預測的各種構造

留言

這個網誌中的熱門文章

最基本的 統御方程式(Governing Equation)包含質量、動量與 能量守恆方程式,說明如下

基因遺傳學之奧妙逐步解祕,終將開啟了㆟類另㆒扇窗。因此吾㆟更需了解胺基酸之作用生理,以期解開㆟類生存健康疾病之奧妙。 因此本文旨要探討:精胺酸生理生化作用暨基礎生物學。這包括:精胺酸在健康疾病所扮演之不同角色

團隊決定延期原本在 2014 年 2 月份舉行的以太幣預售。 2014 年 2 月對於以太坊是一個非常重要的月份