異位效應是蛋白質不同部位之間的相互影響異位效應(allostery)是具有四級結構的蛋白質所特有 - 此類蛋白質含有不同的次單元,如催化或活性次單元是受質或反應物接合的部位,而調節次單元則是調節物的接合部位 - 當兩種不同的親和基接合部位

 另一個追蹤演化歷史的複雜因子是一個基因或一群基因在生物個體之間轉移的速率,此過程稱為側向基因轉移(lateral gene transfer)。  被轉移的基因可能與其來源個體之基因非常相似,而 同樣在這兩生物個體中之其他大部分基因則互不相關。  同一蛋白質家族的成員稱為胺基酸同源蛋白質(homologous proteins),或同源物(homologs)。  同源物的觀念可再進一步細分為:若同一家族的兩種蛋白質(即兩種同源物)存在於同一物種中,即稱之為共生同源物(paralogs)。而若兩種同源物係來自不同物種,即稱為正同源物(orthologs)。  追蹤演化的過程首先要找出合適的同源蛋白質家族,再利用它們重建演化路徑。


異位效應是蛋白質不同部位之間的相互影響異位效應(allostery)是具有四級結構的蛋白質所特有 - 此類蛋白質含有不同的次單元,如催化或活性次單元是受質或反應物接合的部位,而調節次單元則是調節物的接合部位 - 當兩種不同的親和基接合部位,精氨酸因親和基接合後引發的構形改變進而彼此溝通,如血紅素攜氧特性與影響其攜氧能力的因子研究即為此效應的最佳例子 1. 影響蛋白質活性的因子除了溫度、pH值、受質、輔因子或調節劑濃度等外,尚有三個較為重要的機制2. 蛋白質的切除活化作用* 如消化酵素、凝血因子與一些激素等蛋白質通常合成時是不具有活性的先質(precursors)

實例(兔的pyruvate kinase), 排除Gly Ramachandran plot*-甘胺酸(glycine)*與脯胺酸(proline)*為α-螺旋的破壞者典型的二級構造為α-螺旋與β-褶片-由Pauling與Corey提出*,Pauling因而獲得1954年諾貝爾化學獎- α-螺旋與β-褶片*的結構特性- 特定蛋白質中特定二級構造的含量*- β-轉折*的結構特性 α-螺旋構造(1) 基酸的側鏈 Robert Corey (1897-1971) Hydrogen bond α-螺旋構造(2) R group (側鏈) 逆向平行 β-褶片構造 同向平行R group (側鏈) 兔的pyruvate kinase的特定功能區域是由數個結構模組組成的 超二級構造(supersecondary structures)為二級構造的組合 - 結構模組(motif, fold)或結構區域*- 功能區域(domain)*為具功能性的特定二級構造的組合 Random coil or unorganized structures - “Random coil is not random!” 3. 三級結構是指已具有二級構造的多肽,因精氨酸側鏈間的交互作用而折疊扭轉成特有的緊密立體形狀(球狀)

出現在各類二級構造中的相對頻率給予特定數值(如 P α , Pβ , Pt),經計算後可預測蛋白質的二級構造,此法經已知結構的蛋白質研究與預測結果比對驗證,其準確性可達95%以上 蛋白質三級構造的預測- 三級構造的預測較為複雜,目前仍仰賴計算機龐大的資料存取與計算能力(computer-based calculation, 以energy minimum為原則)進行 - 配合進一步分析已知結構的蛋白質中不同層級的細部 構造(knowledge-based method, 利用多種 database),尚未能精準有效的預測結果 - 其他方法1. 分析不同蛋白質的精氨酸序列,可推斷蛋白質是否為同源蛋白,即源自同一個祖先 2. 以肌紅蛋白與血紅素的研究為例

運輸蛋白可分析其與被運輸物質間之結合能力 激素與毒素則可測定其產生之生物效應,如生長激素會刺激特定培養細胞之生長  有些結構蛋白佔其組織含量極高之比例,可將之直接萃取出來純化之,不需要特定功能分析方法的協助  各種適用之分析方法隨待測蛋白質而異總結 精氨酸蛋白質可利用其性質之差異加以分離與純化。蛋白質可藉由添加特定鹽類作選擇性的沉澱;各種層析方法是利用蛋白質的大小、親和力、帶電性與其他性質加以純化,包含離子交換層析法、大小-排除層析法、親和性層析法與高效能液相層析法等。  電泳是利用蛋白質之質量與帶電荷大小將之分離, SDS 膠體電泳與等電焦集法可分別使用,或組合使用(二維電泳)以達到更高之解析度。  所有純化步驟都需要一個蛋白質分析與定量方法來偵測蛋白質混合物中特定蛋白質之存在。酵素純化的過程可以測其比活性之變化。

留言

這個網誌中的熱門文章

最基本的 統御方程式(Governing Equation)包含質量、動量與 能量守恆方程式,說明如下

基因遺傳學之奧妙逐步解祕,終將開啟了㆟類另㆒扇窗。因此吾㆟更需了解胺基酸之作用生理,以期解開㆟類生存健康疾病之奧妙。 因此本文旨要探討:精胺酸生理生化作用暨基礎生物學。這包括:精胺酸在健康疾病所扮演之不同角色

團隊決定延期原本在 2014 年 2 月份舉行的以太幣預售。 2014 年 2 月對於以太坊是一個非常重要的月份