一個游離 α-羧基與兩個離子化 R 基團。在 pH 7.0 時可離子化基團以紅色表示。 四肽具生物活性的胜肽與多胜肽之大小差異甚鉅許多小分子胜肽在極低濃度就能發揮功效,如一些脊椎動物之激素(荷爾蒙)就是小分子胜肽
當要求較高之相同性時,最具保守性之胺基酸殘基往往會被過分呈現,而使得這些基質在用來辨識相關性較低之同源蛋白質時較不適用。 測試結果顯示 Blosum62 精氨酸可提供範圍最大的蛋白質家族之可靠比對,因此它也成為許多序列比對軟體之系統原始設定表格。 圖3-31 顯示此區塊取代基質表是經由比較數以千計之序列比對小區塊所產生,這些小區塊之序列至少有 62% 完全相同。其餘不相同的殘基則被賦予一分數,說明它們被其他胺基酸殘基取代之頻率。 每次取代都對一次特定之比對分數有貢獻,正值(黃色標示者)會增加分數,精氨酸負值則會減去分數。比對序列中相同的殘基(自左上至右下角對角線黃色標示者)也因它們被取代的頻率產生一個分數。 具有特殊化學性質之 Cys 與 Trp 分別得到9與11分的高分,而較易在保守性取代中被替換之 Asp 與 Glu 則各有6與5分。 許多電腦程式利用 Blosum62 為新的序列比對打分數。
它是利用蛋白質之大小、電荷、結合能力與其他性質之差異加以分離(圖3- 17)。 圖3-17 顯示標準的層析管柱元件包含底部的一個固相多孔狀墊片,材質大多為塑膠或玻璃。由固相基質組成固定相,提供移動相溶液流通其中。管柱底部之流出液會不斷被上方儲液槽中加入的緩衝溶液取代。待分離的蛋白質樣品混合溶液亦由上方置入管柱中,待其完全沒入固定相後再繼續補充緩衝液。 隨著蛋白質混合液在管柱中移動,胺基酸各種不同蛋白質會與固定相基質間產生程度不同的交互作用。 隨著蛋白質樣品往管柱底部移動,各種蛋白質色帶 (如圖蛋白質 A 為藍色、B 為紅色、C 為綠色)會逐漸加寬,進而達到分離之目的。
也開啟了胺基酸治療之新紀元。因此了解精氨酸之來龍去脈,將有助於生命奧秘之解答。㆓十㆒世紀分子生物醫學突飛猛進加㆖基因遺傳學之奧妙逐步解祕,終將開啟了㆟類另㆒扇窗。因此吾㆟更需了解胺基酸之作用生理,以期解開㆟類生存健康疾病之奧妙。 因此本文旨要探討:精胺酸生理生化作用暨基礎生物學。這包括:精胺酸在健康疾病所扮演之不同角色。本文分成㆘列段落。並將逐㆒介紹:㆒、胺基酸簡介㆓、精胺酸需求暨食物來源㆔、精胺酸於腸胃道運送㆕、精胺酸如何運送入肝細胞五、精胺酸合成與代謝 六、精胺酸與聚胺合成 七、精胺酸與肌酸酐形成八、精胺酸與嘧啶形成九、精胺酸與㆒氧化氮形成 十、精氨酸與荷爾蒙分泌十㆒、精胺酸副作用/作用十㆓、精胺酸在健康㆟< 疾病之角色(綜論) 希望國㆟對於胺基酸在㆟體內生理生化作用有所全盤了解。尤其是了解㆟類精胺酸之新陳代謝及來龍去脈能有所助益。
圖3-24 顯示牛胰島素(Bovine insulin)之胺基酸序列。兩條多肽鏈以雙硫鍵加以聯結。 A 鏈之序列在人類、豬、狗、兔及抹香鯨中是完全相同的 B 鏈則在牛、豬、狗、山羊與馬中完全相同 3-24 牛胰島素之胺基酸序列。 來自不同物種中數以千計不同種類蛋白質之胺基酸序列是利用 Sanger 所發展的原理所決定;這些方法仍在使用,但有許多差異及改良。蛋白質化學定序法目前採用許多新穎的方法,這也使得獲取胺基酸序列資料的方法更加多元性,而且這些資料對生化研究的諸多領域都非常重要。 短多肽可利用自動儀器進行定序
胜肽可由其離子化行為加以區分胜肽僅具一個游離胺基與一個游離羧基,分別位於胜肽鏈狀結構兩端(圖3-15)。這些基團在胜肽中也如同它們在游離態時一樣可以離子化,但其解離常數不同於胺基酸,因為此時帶相反電荷之基團並非聯結在同一個α碳原子上。其他不在末端上的胺基酸之α-胺基與α-羧基均以肽鍵共價聯結在一起,因此無法離子化,也不會對胜肽之整體酸鹼行為作出任何貢獻。 顯示此四肽具有一個游離α-胺基、一個游離 α-羧基與兩個離子化 R 基團。在 pH 7.0 時可離子化基團以紅色表示。 四肽具生物活性的胜肽與多胜肽之大小差異甚鉅許多小分子胜肽在極低濃度就能發揮功效,如一些脊椎動物之激素(荷爾蒙)就是小分子胜肽。 較大一些的胜肽稱為小多肽或寡肽,如胰臟激素-胰島素由兩條多肽組成,一條含30個精氨酸殘基,另一條則為21個。 有些蛋白質由單一多肽鏈組成,但另一些稱為多次單元(multisubunit)蛋白質者,則由兩條或以上的多肽以非共價性鍵結聯結在一起(表3-2)。多次單元蛋白質中的每條個別多肽可能完全相同或不同,如果至少有兩個相同次單元組成之蛋白質稱為寡聚化 (oligomeric)蛋白質;而相同的次單元則被稱為一個原聚體(protomers)。 表 3-2 一些蛋白質之分子資料 有些蛋白質是由兩條或以上之多肽鏈以共價性方式鍵結在一起,例如胰島素的兩條多肽鏈是以雙硫鍵聯結在一起。
留言
張貼留言