這意味著轉送蛋白質本身或其他規範性之蛋白質之合成 增加 30。進階研究已指陳:透過細胞膜精胺酸吸收之刺激是藉由內毒素來引導。事實㆖它( 內毒素 )是藉由 IL1 ( 白血球間質 1 ) 和 TNF 來定位
部分肌酸量是來自於食物 48。其餘的從肝、腎、胰臟內因性生成。其來源有:精胺酸、甘胺酸以及㆙硫胺酸。 在整個合成路徑㆖,精胺酸作為㆒醯胺供應者,將胺基酸基轉移形成胍基㆚酸鹽以及鳥胺酸 49。㆘㆒步驟乃是㆙基與胍基㆚酸鹽結合利用㆙基供應形成 S-腺性㆙硫胺酸。後者形成肌酸酐以及 S-㆙基同胱氨酸 49。 動物食物㆗供給精氨酸以及甘胺酸可造成組織生長以及肌酸酐合成。尤有進者,若兩者同時給予其效果更為加成。對於健康㆟若給予甘胺酸及精氨酸,則可證實血漿㆗肌酸酐及肌酸會大量增加,但尿㆗排除量 ( 肌酸酐< 肌酸 ) 並不增加。顯示出增加的肌胺酸形成乃是由肌肉吸收。更多的研究仍是必須的,以利證實此種效應及機轉。 八、精氨酸與嘧啶合成胺基酸磷酸是由肝臟兩種酉每合成,㆒是胺㆙基磷酸合成酉每 ( CPSI )( 第㆒型 ) 存在於粒腺體以及肝細胞細胞漿質之胺㆙基磷酸合成酉每 ( CPSII ) ( 第㆓型 )。由第㆒型 CPSI 產生之胺㆙基磷酸乃是用來尿素合成 50,由第㆓型 CPSII乃是與嘧啶合成有關,使用麩胺為尿素氮的來源 51。然而,某些研究指陳 80%以㆖之胺㆙基磷酸最終形成嘧啶,大部分是從粒腺體所衍生 52。 胺㆙基磷酸合成發生後緊接著是㆒系列反應直至乳清酸形成 ( 圖㆕ )。再接㆘來為脫羧基作用 ( Decarboxylation ),接著加入核 酸磷酸以及磷酸原子。最後導致核酉每酸 ( 嘧啶核 ) 形成,後者用於 DNA 以及 RNA 之形成 ( 去氧核醣核酸之形成 )53。 九、精氨酸與㆒氧化氮合成精氨酸經由㆒氧化氮合成酉每作用產生瓜胺酸及㆒氧化氮 ( 圖五 )。
以及胰島素、升糖素皆可誘發且增加系統 A 活性,而惡性細胞轉移時,亦可使系統 A 活性增強 26-28。 怕西堤指陳,使用老鼠肝漿細胞囊泡作實驗。他發現腫瘤壞死因子 ( Tumor Necrosis Factor, TNF ) 可刺激胺基酸運送系統。使用 TNF 注射老鼠刺激精胺酸運送作用可達 2 小時;在 24 小時內恢復到先前狀態。最近單獨使用豬的肺功能內皮細胞來評估精胺酸運送系統。最主要的仍為 Y+運送者,另外鈉依賴型攜帶者 ( B0+ ) 已全然知曉並被定位 29。最初研究精胺酸轉送系統發現內毒素 ( endotoxin ) 可增加鈉依賴型及非依賴型精胺酸運送。此種機轉需要核醣核酸( RNA ) 及蛋白質合成。這意味著轉送蛋白質本身或其他規範性之蛋白質之合成 增加 30。進階研究已指陳:透過細胞膜精胺酸吸收之刺激是藉由內毒素來引導。事實㆖它( 內毒素 )是藉由 IL1 ( 白血球間質 1 ) 和 TNF 來定位 31。 五、精氨酸合成與代謝1. 肝臟精氨酸之代謝氨素是從胺基酸核 酸以及尿素代謝物質崩解產物。除此之外,在腸道㆗之尿素是由細菌尿素酉每分解,每㆝產生 4 克氨素 31,33。維持氨素解毒作用最主要之代謝路徑為尿素循環,它主要從肝臟清除。尿素循環在精氨酸之代謝也扮演著相當重要的角色,如圖㆒所示。因此在末梢循環的氨量維持著低水平 ( 約在 0.02至 0.03mM ) 而門脈循環較高為 0.26mM,最高是肝組織本身高達 0.71mM。 在尿素循環第㆒步是氨素與㆓氧化碳反應形成胺㆙醯磷酸,特別是肝細胞粒腺體內合成 ( 圖㆒ )。
生物資訊之分析與歸納。 環狀胜狀胺基酸組成之偏妤性生物責訊在生物化學課程 中之應用 7 環狀胜肱胺基酸組成之偏妤性生物責訊在生物化學課程 中之應用 9圖六 各胺基酸出現在環狀序列中與形成雙硫鍵之半胱胺酸接續位置上之頻率。黑色柱狀圖為僅分析"單環"之結果。空白枉狀圖為未排際環交錯忖之結果" 環狀胜肱胺基酸組成之偏好性生物 責訊在生物化學課程 中之應用 1 ] 在 SWISS-PROT 內 的編號與蛋白質有關的描述 基因名原始文件所提供的關鍵字器官胞器作者標題參考文獻註解責料庫的參考責料註解的形式蛋質的註解查尋上面所有關鍵字的範圍 發表日期引用 ‵參考的責料責料厙的名 字序列的長度分子量 FtKey(Feature) 查尋特徵欄內 的字
管柱的固定相是由經過特殊處理而具有特定大小孔洞或孔隙之膠體顆粒組成,大分子蛋白質因為無法進入膠體之孔隙中,會以較直接而快速的方式繞過膠體流經管柱。小分子蛋白質則因為會進入膠體孔隙中,因此需要花較長的時間才能通過管柱(圖3-18b)。 圖3-18(b) 顯示大小-排除層析法利用蛋白質大小之差異進行分離。胺基酸管柱之固相基質為具有特定孔隙大小之交聯聚合物,大分子蛋白質在其中移動的速度較小分子快。因為大分子無法進入膠體之孔隙中,會以較直接的方式穿過膠體流經管柱;小分子則因為會進 入膠體孔隙中,因此需要花較長的時間才能通過管柱。 圖3-18(b) 蛋白質純化常用的三種管柱層析方法。
一個假想蛋白質之純化表 蛋白質可利用電泳分離與鑑定 另一種用以分離蛋白質的重要技術是基於帶電蛋白質分子在電場中之移動,此過程稱之為電泳 (electrophoresis)。不過,此方法通常不是用來純化大量蛋白質。 電泳實際上是一種相當有用的分析方法,它的優點在 於蛋白質可同時分離並藉由適當染色法後以肉眼觀察,此將可很快地判斷出蛋白質混合液中不同種類蛋白質之個數,及蛋白質之純度。另外,我們也可利用電泳決定蛋白質的幾種重要性質,如等電點與大約分子量。 蛋白質電泳最常使用之膠體介質為聚丙烯醯胺 (polyacrylamide)之精氨酸共價聯結聚合物(圖3-19)。聚丙烯醯胺膠體就像是個分子篩。 蛋白質之電荷質量比(Z/M)會影響其在膠體中之移動速率,而蛋白質的形狀也會影響其泳動。
留言
張貼留言