整個肌紅蛋白分子為球狀,摺疊十分緊密,其中75%為α-螺旋構造,血基質約位於蛋白分子的中心並以所含的Fe+2與O2接合進行輸送及儲存O2 - Kendrew因解出結構的貢獻而獲得1962年諾貝爾化學獎

 胺基是一種絕佳的親核性反應基團,然而 -OH 基卻是一種很差的離去基且不容易被取代。在生理條件的 pH 值下,此反應不容易直接發生。 圖 3-13 縮合反應形成胜肽鍵。當只有幾個胺基酸連結時,其結構稱為寡肽(oligopeptide)。而當許多胺基酸連結時,其產物則稱為多肽(polypeptide)。  胜肽中位於左端具有游離胺基之精氨酸殘基稱為胺基端(amino-terminal)或 N-端殘基,而位於右端具有游離羧基的則稱為羧基端(carboxyl- terminal)或 C-端殘基。 圖3-14 為五肽( Ser-Gly-Tyr-Ala-Leu)。胜肽的命名是由胺基端殘基開始,一般位於左端。胜肽鍵以黃色表示,R 基團則為紅色。


人類PrP蛋白單體(左)與雙聚體(右)形式 1. 肌紅蛋白與血紅素肌紅蛋白(myoglobin, Mb)- 肌紅蛋白負責肌肉細胞內O2的輸送與儲存,屬功能性蛋白質,含153個胺基酸與血基質* 肌紅蛋白的結構* 由X光晶體繞射的結果研判得知,整個肌紅蛋白分子為球狀,摺疊十分緊密,其中75%為α-螺旋構造,血基質約位於蛋白分子的中心並以所含的Fe+2與O2接合進行輸送及儲存O2 - Kendrew因解出結構的貢獻而獲得1962年諾貝爾化學獎 血紅素(hemoglobin, Hb)- 血紅素在肺與組織細胞間擔任O2的輸送*血紅素具有四級構造*,由兩個α次單元與兩個 β次單元構成一個四面體的立體排列,組成的α次單元 (含有141個胺基酸)與β次單元(含有146個精氨酸)的分子中心,分別含有血基質可與O2接合 - Perutz因解出構造而與Kendrew同獲諾貝爾獎

此類研究衍生出利用分析特定蛋白質的胺基酸序列以建構演化關係的“分子演化學” 由分析細胞色素c建構的演化樹 1. 蛋白質表現生物功能時需與其它分子接合,此接合通常是緊密、專一、且會形成複合體,如調控基因表現的核酸蛋白或細胞辨識的醣蛋白與細胞膜上的受體蛋白或運輸蛋白等 此接合雖然與細胞的繁殖、生長與發育等不同的生理作用有關,但蛋白質與其它分子間的交互作用與專一辨識過程均十分相似 - 親和基(ligand)是與特定蛋白質產生專一性接合的分子,如酵素的受質、產物、輔因子、阻害劑或 活化劑,甚至運輸蛋白所輸送的物質等 2. 親和基的接合作用蛋白質與其親和基的接合通常具有專一性,此專一性來自於兩者構造的互補特性與兩者接合後可產生新的安定作用力

此種酉每系統至少有兩種不同之家族。此結構型式是鈣及調鈣蛋白依賴型。此原始型態存於神經元、內皮細胞、血小板、巨噬細胞、間質細胞以及心內膜及心肌細胞。它主要存於細胞膜緊接著微粒形成 55-57。但仍有少部分胞質液之㆒氧化氮合成酉每-後者較少鈣質及調鈣蛋白依賴 58。這些酉每系統會產生持續性低流量㆒氧 化氮釋放。另外㆒精氨酸氧化氮合成酉每乃是誘導型。它既不被表現,也非鈣質及調鈣蛋白依賴型 57-61。後者存於其他組織,包括血管平滑肌、腫瘤細胞、肝細胞、巨噬細胞、庫氏細胞、㆗性白血球、心肌細胞及纖維母細胞 57-61。此種合成酉每 ( NOS ) 僅對於細胞素有反應而產生 ( 諸如干擾素 γ 以及內毒素 ) 而且會使 ㆒氧化氮產生量急遽增加 20 倍之多 62

膜蛋白(多為球狀蛋白),可形成通道控制物質進出(如運輸蛋白與離子通道),可參與外界訊號的傳遞 (如激素的受體蛋白),可參與能量的產生(如細胞呼吸鏈與ATP合成酶) 依組成- 簡單蛋白只含胺基酸- 複合蛋白*除含胺基酸外尚有其他成份 脂蛋白醣蛋白血基質蛋白 核黃蛋白金屬蛋白 1.當分析特定蛋白質的結構與功能時,需將此蛋白質由其存在的環境(如細胞抽取液)中分離出,此即蛋白質的純化 蛋白質純化是利用一系列步驟保留樣品中的特定蛋白質而同時將其他蛋白質移除的過程2.

留言

這個網誌中的熱門文章

電刺激或關節內注射類固醇,合併復健專科醫師或治 療師指導肩關節的活動包括:往前上舉、往後上舉、側面上舉、內旋、外轉等,將粘黏緊縮的關節拉鬆 伸展開後,逐漸恢復功能。 四、肘關節疼痛 (一) 成因

基因遺傳學之奧妙逐步解祕,終將開啟了㆟類另㆒扇窗。因此吾㆟更需了解胺基酸之作用生理,以期解開㆟類生存健康疾病之奧妙。 因此本文旨要探討:精胺酸生理生化作用暨基礎生物學。這包括:精胺酸在健康疾病所扮演之不同角色

運動員在參加運動時,可能會因為運動過度或錯誤的動作而受傷,醫療支架可以提供額外的支撐和保護,幫助減輕疼痛,促進傷口癒合和康復。 關節炎:關節炎是一種慢性疾病,醫療支架可以穿戴在關節周圍