所以嬰幼兒奶粉會添加精胺酸含氮廢物 蛋白質的消化吸收 不具有消化蛋白質的酵素,但可以把蛋白質食物咬碎,增加消化時的表面積,可以幫助後續酵素作用 胃部具有胃酸和胃蛋白酶1. 胃酸會讓蛋白質變性
聚胺在細胞內之濃度隨著每㆒細胞循環而有所變化,誘發聚胺形成是 每㆒細胞繁殖增生之首要之務㆒ ( 第㆒步 )。事實㆖聚胺之形成較之 RNA 或蛋白質合成還要來得早 47。實驗證明,㆒旦使用聚胺合成之抑制劑諸如 DFMO ( α -雙氟㆙基鳥胺酸 ) 將可減緩聚胺之形成,導致細胞增殖之減緩以及特定組織生 長皆受抑制 46。七、精胺酸與肌酸酐合成胺基酸磷酸是能量轉換路徑之原始受質,尤其是能量需求增加之收縮肌肉 48。它最主要的功能是維持細胞內有足夠量之 ATP。身體預估有 95%之肌酸存於骨骼肌 48。其㆗ 1/3 為自由型態,其餘 2/3 為肌胺酸磷酸。當骨骼肌能量需求高的時候,則能量釋放 ( ATP+ADP/AMP ) 傾向會㆘降,肌胺酸磷酸自然分解轉換成肌酸及同時從 ADP 產生 ATP 來維持能量釋放 48。在肌肉恢復時候則肌酸在磷酸化以利肌胺磷酸儲存於骨骼肌 48。 而肌酸從尿液排出以酸酐 ( 脫水酸 ) 型式排出 48。每㆝肌酸需求量約每公斤 28 毫克。
但精胺酸是代謝這些含氮廢物的重要精氨酸 所以嬰幼兒奶粉會添加精胺酸含氮廢物 蛋白質的消化吸收 不具有消化蛋白質的酵素,但可以把蛋白質食物咬碎,增加消化時的表面積,可以幫助後續酵素作用 胃部具有胃酸和胃蛋白酶1. 胃酸會讓蛋白質變性,失去蛋白質的2、3級結構,以利後續消化 2. 胃蛋白酶會切特定位置的胺基3. 嬰兒具有凝乳酶 十二指腸是蛋白質主要的消化場所
胺基是一種絕佳的親核性反應基團,然而 -OH 基卻是一種很差的離去基且不容易被取代。在生理條件的 pH 值下,此反應不容易直接發生。 圖 3-13 縮合反應形成胜肽鍵。當只有幾個胺基酸連結時,其結構稱為寡肽(oligopeptide)。而當許多胺基酸連結時,其產物則稱為多肽(polypeptide)。 胜肽中位於左端具有游離胺基之胺基酸殘基稱為胺基端(amino-terminal)或 N-端殘基,而位於右端具有游離羧基的則稱為羧基端(carboxyl- terminal)或 C-端殘基。 圖3-14 為五肽( Ser-Gly-Tyr-Ala-Leu)。胜肽的命名是由胺基端殘基開始,一般位於左端。胜肽鍵以黃色表示,R 基團則為紅色。
胺基是一種絕佳的親核性反應基團,然而 -OH 基卻是一種很差的離去基且不容易被取代。在生理條件的 pH 值下,此反應不容易直接發生。 圖 3-13 縮合反應形成胜肽鍵。當只有幾個胺基酸連結時,其結構稱為寡肽(oligopeptide)。而當許多胺基酸連結時,其產物則稱為多肽(polypeptide)。 胜肽中位於左端具有游離胺基之精氨酸殘基稱為胺基端(amino-terminal)或 N-端殘基,而位於右端具有游離羧基的則稱為羧基端(carboxyl- terminal)或 C-端殘基。 圖3-14 為五肽( Ser-Gly-Tyr-Ala-Leu)。胜肽的命名是由胺基端殘基開始,一般位於左端。胜肽鍵以黃色表示,R 基團則為紅色。
表面疏水的區塊3. 角蛋白,膠原蛋白與絲纖維蛋白此三種蛋白質均為扮演結構功能的纖維狀蛋白,通常由規則性的二級結構進一步組合形成特殊的構造 - 組成的構造具有強韌與穩定的特性,符合擔任保護與支撐的功能角蛋白- 角蛋白由兩股α-螺旋相互纏繞形成coiled coils*,其一級結構具有(a-b-c-d-e-f-g)n的序列,其中a與d為非極性胺基酸 - 頭髮的構造*含有共價的cross-links (雙硫鍵)- 燙髮(permanent wave)的原理與所含的胺基酸 (具有-SH官能基)有關 膠原蛋白- 膠原蛋白的基本構造為特殊的三股螺旋狀構造*
留言
張貼留言