電點焦集*在特定pH值時,蛋白質所帶的正、負電荷相等, 蛋白質分子的淨電荷為零,在電場中不移動,此pH值稱為等電點(pI)- 電泳SDS-PAGE (SDS-polyacrylamide gelelectrophoresis)*二維電泳
酸形成 ( Nucleotides synthesis )胺基酸治療 ( Amino acid therapy ) 表㆔:L-精氨酸對於荷爾蒙分泌之影響組織 荷爾蒙 胰臟 胰島素(insulin)昇糖素(glucagons)胰臟多胜月太(PP)生長激素釋放抑制因子(somatostatin) 腦㆘垂體 生長激素(GH)泌乳激素(prolactin)腎㆖腺 兒茶酚氨(catecholamines)表㆕:精氨酸灌注對於健康婦女生長激素之影響 前言自從〝㆒氧化氮〞觀念於 1998 年獲得諾貝爾醫學獎桂冠之後,精氨酸——㆒氧化氮路徑之神秘面紗就此掀開。
半胱胺酸由其 硫醇基提供;天冬醯胺與麩胺醯胺則由其醯胺基提供。 monosodium glutamate(麩胺酸-鈉) — 味素成分 兩分子半胱胺酸很容易經由氧化作用形成具有雙硫鍵結之產物胱胺酸(cystine)(圖3-7),此經由雙硫鍵聯結之殘基則變得極為疏水性(非極性)。雙硫鍵在許多蛋白質結構中扮演非常特別的角色,它可能將蛋白質分子的不同區域或是將兩條多作共價鍵結。 圖3-7 顯示兩分子半胱胺酸可氧化形成具雙硫鍵的胱胺酸,胺基酸亦能進行可逆還原反應。雙硫鍵之形成有助於穩定許多蛋白質的結構。 帶正電(鹼性)R 基團 在 pH 7.0 時 R 基團帶最強正電之胺基酸是離胺酸
(lysine),它在其脂肪族支鏈末端ε位置帶有第二個一級胺基;精胺酸(arginine)具有一個帶正電的胍 基團;另外則是帶有咪唑基團之組胺酸 (histidine)。 帶負電(酸性)R 基團在 pH 7.0 時 R 基團帶有淨負電的兩個胺基酸為天冬胺酸(aspartate)與麩胺酸(glutamate),兩者均具有第二個羧基。 特殊精氨酸也具有重要功能 除了20種常見胺基酸之外,蛋白質序列中也可能含有由常見胺基酸殘基經化學修飾作用產生的特殊胺基酸殘基(圖3-8a);這些特殊胺基酸包括 4-羥基脯胺酸( 4-hydroxyproline ; 脯胺酸的衍生物) 與 5-羥基離胺酸(5-hydroxylysine;離胺酸的衍生物),前者出現於植物細胞壁蛋白質中,兩者也都存在於膠原蛋白(一種結締組織之纖維狀蛋白質)中。 6-N-甲基離胺酸(6-N-Methyllysine)是肌球蛋白(肌肉組織的收縮蛋白)的組成份之一
純化蛋白質的用途 純化所得的蛋白質組成均一,可用於進行活性分析的生理生化研究、析出晶體的結構研究、工業上固定化酵素的應用等 3. 蛋白質分離與純化的原理分離的原理 -可利用蛋白質的分子量大小、帶電特性、胺基酸溶解度或蛋白質與特定物質間的吸附作用等 利用分子量大小的方法- 透析*- 超過濾*- 分子篩或膠體過濾管柱層析* 超過濾(ultrafiltration) 透析(dialysis) 分子篩(molecular sieve)或膠體過濾(gel filtration)管柱層析(column chromatography) 利用帶電特性的方法- 離子交換管柱層析法*- 等電點焦集*在特定pH值時,蛋白質所帶的正、負電荷相等, 蛋白質分子的淨電荷為零,在電場中不移動,此pH值稱為等電點(pI)- 電泳SDS-PAGE (SDS-polyacrylamide gelelectrophoresis)*二維電泳(two-dimensional gel electrophoresis, 2D電泳)*毛細管電泳 離子交換(ion exchange)管柱層析
後者是來自於血漿或是精胺酸酉每分解精胺酸之細胞內崩解產物。它可轉化成腐肉鹼胺。後者是鳥胺酸去羥酉每之作用。精胺酸崩解乃是聚胺形成之初步,而細胞內精胺酸之濃度控制者多胺之形成 44。 在聚胺合成過程㆗,胺基酸前身所扮演之角色或許可解釋精胺酸分解酉每在許多組織㆗分布很廣。㆒旦構成之後,腐肉鹼胺在㆒系列反應㆗會轉換成精胺質,這過程需要胺基㆛晴之加入㆒此化學結構團是來自於㆙硫胺酸。它是介由㆗間物質 S-腺 ㆙硫胺酸之催化以及精胺質合成酉每之作用合成。( 詳見圖㆔ ),此種反應作用包含精胺質暨精素合成酉每是公認為不可逆之反應。 但是精素轉換回去成精胺質及腐肉鹼胺仍可發生 ( 圖㆔ ),但必須經由特殊的酉每如:精胺質-N-轉換酉每以及聚胺氧化酉每之個別作用 46。 聚胺之功能特別是提高細胞之增生,以及組織之成長以及分化,扮演相當重要之角色 45。
留言
張貼留言