發表文章

目前顯示的是 9月, 2025的文章

足夠的休息與復健才能讓關節常保健康。二、退化性關節炎症狀有哪些?掌握關節退化病程好就醫! 基本上退化性關節炎手指、膝蓋退化症狀差不多,整體來說可分成下列4級,每級的骨頭退化症狀與疼痛程度都不同

 中山醫學大學復健醫學系物理治療組學士 【現職】 ・愛心婦幼健康聯盟 館長 ・彤顏健康管理公司 營運長 ・ 關節炎護膝 嬰幼兒發展與家庭關係促進專業協會 總召 【經歷】 ・中山醫學大學物理治療學系助理教授 ・慈濟技術學院物理治療系 講師 ・仁德醫護專科學校復健科物理治療組 講師 ・臺灣腫瘤癌症運動促進學會 常務理事 ・台中市立復健醫院 物理治療師 ・中興醫院 物理治療師 王廷明 主任 【學歷】 ・臺大醫學系 ・臺大醫學工程學研究所博士 ・日本昭和大學脊椎微創手術 ・千葉兒童醫院小兒骨科骨科研究員 ・日本關東勞災病院脊椎外科研究員 【現職】 ・國立台灣大學醫學院醫學系 教授 ・臺大醫院骨科部 主治醫師 ・臺大醫院小兒骨科 主任 ・臺灣小兒骨科醫學會 常務理事 【經歷】 ・臺大醫院骨科部 住院醫師 ・衛生署台北醫院骨科 主治醫師 ・臺灣小兒骨科醫學會 理事 ・   衛生福利部社會及家庭署多功能輔具 資源整合推廣中心 (三)協辦:台灣復健醫學會 六、  醫療護膝推薦 學分認證: (一)台灣義肢裝具學會教育積分:20 點 (二)台灣復健醫學會教育積分:申請中 (三)臺灣物理治療學會繼續教育積分:申請中 (四)臺灣職能治療學會繼續教育積分:申請中 (五)公務人員終身學習學分:申請中 七、 講座團隊簡介: (一) 講座:永野徹 (Toru Nagano, CPO) 日本義肢裝具師現任: 1、 現職:永野義肢有限公司 社長(董事長) (Director, Nagano Prosthetics & Orthotics Co. LTD) 2、 專長:各式背架及上下肢矯具製作。 (二) 助教: 1、永野 宏佳 永野義肢有限公司 部門經理 2、宮部 昌洋 永野義肢有限公司 組長 八、 報名費用: n 報名費含課程所需講義、研習證明。 n 報名限額:40 名(屬實作示範課程,名額有限,敬請見諒)。 n 會員(台灣義肢裝具學會 醫療護膝推薦 、台灣人工肢體及輔具研究學會)新臺幣 6,000 元整(需繳清 108 年度及 108 年度以前之年費),非會員新臺幣 8,000 元整。 4 九、 報名注意事項: n 報名費繳交方式: ※劃撥帳號:1947-1764,劃撥戶名:台灣義肢裝具學會 ※請於劃撥單通訊欄註明報名人員之「姓名、電話、課程名稱、費用」。 ※請將劃撥收據,...

頸架使用時間,只要是起床活動開始即應戴著。在配戴頸 圈期間不宜做前屈及後仰的動作。 (二)至於需大多久?以及配戴方式,必須向醫師詢問,因為穿戴太久或太短 都不宜,而穿戴不正確也會使頸部更不舒服

 近年來網路科 技發達,不分男女老幼,更因重度使用 電腦、筆電、平板電腦、手機等各種電 子產品,常常引發肩頸痠痛、頭痛頭 暈、目眩耳鳴、 醫療護腕推薦 全身不適等各種「頸椎 病」相關症狀。因此,現代人更應具備 「牽一頸而動全身」的觀念,好好護頸 保命、健頸強身。 一般而言,「典型」的頸椎神經「壓 迫」到的是感覺神經(會麻會痛)、 醫療護腕推薦 或 運動神經(肌肉萎縮無力)、或脊髓神 經(步態不穩、大小便失禁)等「典型 症狀」;但頸椎病患者常會表現出許多 「非典型」的「交感神經受到激惹」的 症狀,包括頭痛、眩暈、耳鳴、視力模 糊、心悸、胸悶、腸胃不適、泌尿失常 等「全身上下、裡裡外外、從皮到骨、 五臟六腑」的不舒服。可惜的是,許多 各科的醫師都不知道「即使頸椎輕微退 化或錯位也可能引發全身且嚴重症狀」 的觀念,因而延誤診治,造成病人的 「無助」。 註三十一、謝章優(2003)。脊骨神經科醫師與物理治療師的不同。2014 年 10 月 8 日,取自 關節炎護膝  http://web.it.nctu.edu.tw/~hcsci/hospital/chiropractic/hsieh1.htm。 註三十二、吳子宏、李勝雄(1998)。國小學童姿勢健康的殺手「脊椎側彎」 研習資訊,15(5),25-34。頁 32。 註三十三、林季福(2004)。身心動作教育課程應用於開發學童覺察能力與改善 脊柱側彎效果之研究。國立臺東大學教育研究所。頁 49-50。 註三十四、同註五。 註三十五、林季福(2004)。身心動作教育課程應用於開發學童覺察能力與改善 脊柱側彎效果之研究。國立臺東大學教育研究所。頁 2。 註三十六、R.N. Sharipov, A.M. Zaidman, I.V. Zorkol’tseva, T.I. Aksenovich, & G.M. Dymshits, (2006). Polymorphism of the aggrecan gene in families with idiopathic scoliosis. Molecular Biology, 40(3), 554–557. 註三十七、Johnson, Allie.(2014). New hope for scoliosis. Texas Monthly, 42(6), 128...

前身所扮演之角色或許可解釋精胺酸分解酉每在許多組織㆗分布很廣。㆒旦構成之後,腐肉鹼胺在㆒系列反應㆗會轉換成精胺質,這過程需要胺基㆛晴之加入㆒此化學結構團是來自於㆙硫胺酸。它是介由㆗間物質 S-腺 ㆙硫胺酸

 以目前所使用的化學反應組合來說,最重要的限制在於每個化學循環的反應效率。我們可由計算不同長度的胜肽, 在每步驟產率為 96.0% 或 99.8%下所得之總產率(表3-8)來說明。任一步驟之反應不完全,將造成下一步驟不純物的產生(即較短之胜肽片段)。 表 3-8 胜肽合成各步驟產率對總產率之影響 許多新的胜肽聯結方法,可供將胜肽組合成大分子蛋白質。藉由這些方法,各種新型式的蛋白質(甚至包含一般在細胞蛋白質中不存在者)都可藉由化學官能基團的精確定位製造出來。這些新型式的蛋白質,有助於我們以新的方法測試酵素催化特性、創造具有新化學性質之蛋白質、以及可摺疊成特定結構之胜肽序列。 胺基酸序列可提供重要的生化資訊  蛋白質家族具有共同的序列與功能特徵,可以藉由 胺基酸 序列之間的相似性程度加以判斷歸類。 在與O2的接合上,肌紅蛋白無協同性(雙曲線圖形),血紅素具協同性(“S”形曲線圖形)*,肌紅蛋白接O2的能力不受調節,血紅素接O2的能力受多種因素調節 血紅素的構形變化*- T構形(T state, tensed或taut)指血紅素分子結構較緊縮,為不接氧的形式(deoxy form),對O2的親和力弱 - R構形(R state, relaxed)指血紅素分子結構較膨鬆, 精氨酸 為接氧的形式(oxy form),對O2的親和力強 T構形 R構形 血紅素接O2時血基質鄰近區域構形的改變 後者是來自於血漿或是精胺酸酉每分解精胺酸之細胞內崩解產物。它可轉化成腐肉鹼胺。後者是鳥胺酸去羥酉每之作用。精胺酸崩解乃是聚胺形成之初步,而細胞內精胺酸之濃度控制者多胺之形成 44。 在聚胺合成過程㆗, 胺基酸 前身所扮演之角色或許可解釋精胺酸分解酉每在許多組織㆗分布很廣。㆒旦構成之後,腐肉鹼胺在㆒系列反應㆗會轉換成精胺質,這過程需要胺基㆛晴之加入㆒此化學結構團是來自於㆙硫胺酸。它是介由㆗間物質 S-腺 ㆙硫胺酸之催化以及精胺質合成酉每之作用合成。( 詳見圖㆔ ),此種反應作用包含精胺質暨精素合成酉每是公認為不可逆之反應。 但是精素轉換回去成精胺質及腐肉鹼胺仍可發生 ( 圖㆔ ),但必須經由特殊的酉每如:精胺質-N-轉換酉每以及聚胺氧化酉每之個別作用 46。 聚胺之功能特別是提高細胞之增生,以及組織之成長以及分化,扮演相當重要之角色 45。 小腸能分泌內激酶,能活化胰蛋白酶2. 胰蛋...

其快速正確的摺疊需許多其他蛋白質的協助 分子伴護蛋白(molecular chaperones)- 伴隨蛋白或伴從蛋白(chaperones)*扮演被動 角色,如Hsp70s (熱休克蛋白70)會與未摺疊或部份摺疊的蛋白質接合,避免未摺疊或部份摺疊的蛋白質黏集而被降解

 因為雞胸肉的脂肪含量更低 去皮雞胸清肉含脂量1.9%0.55克(佔脂肪的29%) 帶皮去骨雞腿含脂量16.9%5.3克(佔脂肪的29%)所以消費者選擇了一個很優質的肉類來源,再把它用不健康的烹調.....#再搭配不健康的飲料蛋白質食物的食品安全 先來講講雞品安全議題好了台灣人年消費43萬公噸,以一般上市體重1.9公斤計算,台灣年消費量約為雞長這麼快,一定有打生長激素!?精氨酸生理生化作用:它在㆟類健康與疾病之角色林廷燦國仁醫院 內科部高雄聯合門診㆗心高雄醫科大學暨美和護理技術學院摘 要精氨酸是㆟體必需胺基酸之㆒種。自從㆒氧化氮觀念風行后,多年來㆒直是基礎暨臨床研究之焦點。吾㆟深知精氨酸不管在㆟體或動物實驗深具生物、生化以及新陳代謝過程扮演相當重要之角色,包括聚胺、肌酸酐、尿素氮以及㆒氧化氮之形成、精氨以及嘧啶合成。它除了參與細胞與組織蛋白質形成外,精氨酸更能影響荷爾蒙之釋放以及核 酸之形成。這些很重要的生物效應促使精氨酸本身、前身以及相關代謝產物形成各種不同代謝路徑之相互作用,以及器官之間之〝溝通橋樑。事實㆖,精氨酸參與不同但同時發生之路徑,包括代謝物之排泄、肌肉代謝、血管調控以及免疫系統功能以及神經傳導,包括相關之 RNA 合成,還有荷爾蒙調控之內在機制。 本篇論文著眼於 精氨酸 食物來源暨需求之介紹、轉運的路徑及過程以及身體各器官之如何形成及代謝,其機轉以及分子生物醫學眼光細絲剝繭的解析。精氨酸各種代謝路徑及產物;這些生命過程㆗不可或缺的物質,包括㆒氧化氮在內之基礎暨臨床研究,終將解開㆟類健康與疾病之間之生理、生化、病理奧秘。 關鍵詞:左旋精氨酸 ( L-arginine )蛋白質合成 ( Protein-synthesis )荷爾蒙釋放 ( Hormonal release )核 因素,即疏水的胺基酸側鏈的分佈- 漏斗模式(funnel model)*中,漏斗為energy landscape (能量圖景,位能鳥瞰),蛋白質的特有構形所含能量最低,因此最穩定 - 二級構造 →結構區域 →功能區域 →特有立體構形 10. 參與摺疊的蛋白質蛋白質在合成後, 胺基酸 並非所有蛋白質皆能及時自發地摺疊成正確的構形,其快速正確的摺疊需許多其他蛋白質的協助 分子伴護蛋白(molecular chaperones)- 伴隨蛋白或伴從蛋白(chaperones)*扮...

異位效應是蛋白質不同部位之間的相互影響異位效應(allostery)是具有四級結構的蛋白質所特有 - 此類蛋白質含有不同的次單元,如催化或活性次單元是受質或反應物接合的部位,而調節次單元則是調節物的接合部位

 胜肽為胺基酸結合成之鏈狀體 兩個 胺基酸 可藉由一取代之醯胺鍵結, 即胜肽鍵 (peptide bond)作共價性聯結形成所謂雙肽。此鍵結是由一個胺基酸之羧基及另一胺基酸之胺基共同脫去一個水分子而形成(圖3-13)。 胜肽鍵之形成為一縮合反應,這是一種活體細胞中常見的化學反應。在標準生化條件下,圖3-13 之反應式會較傾向於胺基酸,而非雙肽。 圖3-13 中,官能基標示為 R2 之 胺基酸 中之α-胺基可作為親核性反應基團,取代另一個標示為 R1 之胺基酸中的 -OH 基,以形成胜肽鍵(黃色)。 在每一個純化步驟之後,酵素之活性(以酵素單位表示)與總蛋白質含量均會被獨立分析,兩者之比值即為比活性。  活性與比活性這兩個名詞的差異可用圖3-23 的兩個盛裝彈珠之燒杯加以說明。  兩個燒杯中裝有相同數目的紅色彈珠及不同數目的其他顏色彈珠, 精氨酸 若以彈珠表示蛋白質,則兩個燒杯所含有之活性(以紅色彈珠含量表示)相等;但右方燒杯所含之紅色彈珠佔整體比例較高,故其比活性較高。 圖 3-23 活性與比活性。對不是酵素之蛋白質而言,需要其他適當的定量方法 異位效應是蛋白質不同部位之間的相互影響異位效應(allostery)是具有四級結構的蛋白質所特有 - 此類蛋白質含有不同的次單元,如催化或活性次單元是受質或反應物接合的部位,而調節次單元則是調節物的接合部位 - 當兩種不同的親和基接合部位, 精氨酸 因親和基接合後引發的構形改變進而彼此溝通,如血紅素攜氧特性與影響其攜氧能力的因子研究即為此效應的最佳例子 1. 影響蛋白質活性的因子除了溫度、pH值、受質、輔因子或調節劑濃度等外,尚有三個較為重要的機制2. 蛋白質的切除活化作用* 如消化酵素、凝血因子與一些激素等蛋白質通常合成時是不具有活性的先質(precursors) 顯示反應至是形成每一個肽鍵所需之步驟。 以 9-茀基甲氧羰基(9-FluorenylMethOxyCarbonyl,Fmoc;藍色區塊所示)作為保護基可避免反應過程中胺基酸殘基(紅色區塊所示)之α-胺基發生副反應。  此化學合成法是由羧基端開始向胺基端合成胜肽,與活體內蛋白質合成方向恰為相反。 圖 3-29 在固相聚合物上 精氨酸 進行胜肽之化學合成。  胜肽化學合成法現在已可進一步以機器自動化操作進行。 60公斤成人每日安全攝取上限為2...

關鍵新發明是將胜肽之一端連接在固相擔體上來進行合成反應。此固相支持物是一種不溶性的聚合物(樹脂),類似管柱層析實驗中所用的填充物。  胜肽就是在此固相擔體上以重複循環之標準反應組合將胺基酸殘基一個接一個依序聯結而成

 伴護蛋白(chaperonins)*扮演主動角色,如Hsp60會直接促進蛋白質的摺疊 其他蛋白- Protein disulfide isomerase (PDI)負責雙鍵的正確配對-eptide proyl cis-trans isomerase (PPI)負責脯胺酸參與肽鍵時的異構化反應 1. 與蛋白質摺疊缺失有關的疾病普昂疾病(the prion disease) - Prion (proteinaceous infectious only)- Prusiner因此獲得1997年諾貝爾生醫獎 纖維囊腫(cystic fibrosis)-Cystic fibrosis transmembrane conductance regulator (CFTR)因發生 精氨酸 (F508)刪除突變,導致摺疊過程的中間產物無法自伴隨蛋白脫離, CFTR無法抵達其最終作用場所 肺氣腫(emphysema)- α1-Antitrypsin發生缺失,無法抑制彈力蛋白酶(elastase),彈力蛋白受損 亞硝酸鹽丌是會胃癌嗎,為什麼香腸還要加? 變性肌紅蛋白脫氧肌紅蛋白亞硝酸鹽加熱肉是什麼顏色才正常亞硝酸鹽胺亞硝胺 肉是什麼顏色 胺基酸 才正常亞硝酸鹽胺亞硝胺肉是什麼顏色才正常 亞硝酸鹽胺亞硝胺 1. 胺的含量在肉中高嗎? 2. 只要是胺就會反應成亞硝胺嗎?3. 反應的量多嗎? 肉是什麼顏色才正常亞硝酸鹽胺亞硝胺 Bruce Merrifield 的關鍵新發明是將胜肽之一端連接在固相擔體上來進行合成反應。此固相支持物是一種不溶性的聚合物(樹脂),類似管柱層析實驗中所用的填充物。  胜肽就是在此固相擔體上以重複循環之標準反應組合將胺基酸殘基一個接一個依序聯結而成(圖3-29)。  在每個連續性的步驟中, 精氨酸 上的保護基可避免無謂的副反應發生。 目前已知此28個胺基酸和細胞色素c的功能有密切的關係,只要任一個胺基酸被其他種類的 胺基酸取代時皆會影響細胞色素c的功能當比較不同物種的細胞色素c的 精氨酸 序列時,發現不同物種間的序列差異程度與其親緣關係有一定的比例關係*- 如人的細胞色素c胺基酸序列與黑猩猩的完全相同, 與其他哺乳類有10個胺基酸的差異,與爬蟲類有14個差異,與魚類、軟體動物、昆蟲與酵母或高等植物則分別有18個、29個、31個與40個以上的差異 - 分析細...

可以鍛鍊頸部後方的肌群。 我常說:「牽一頸而動全身」,意即 頸椎若有病(退化、失穩、錯位),有可 能引發全身(由表而裡,從筋骨到臟腑; 全身上下,從頭頂到腳底)不舒服。如果 病人、家屬或醫師沒有這觀念

 追蹤個 人自二○○九年來以「融合手術」治療 的兩百多位頸椎病患者,臨床成效有超 過八成以上的滿意度。由此可見,頸椎 病即使嚴重到要動刀,病友們切勿驚 慌,但一定要和醫師配合,做階段性、 漸進式的治療。 頸椎病如何預防? 俗話說:「坐乎正,才會得人疼」「坐 有坐相,站有站相」,意即平日就得保 持正確姿勢, 醫療護腕推薦 才能遠離痠痛。道理很簡 單、明白,但就是很多人做不到,導致 產生許許多多的低頭族、烏龜脖、猿人 族。古代人所謂「案牘勞形」,對照現 代人,就是長期低頭使用電腦、手機而 影響身體健康。因此,電腦或筆電的高 度,一定要與眼睛視線同一水平。使用 手機、平板,也是儘量「以機就眼」, 避免低頭帶來的危害。 治療前的自律神經症狀評估表。 30 人醫心傳2020.3 封面故事 而動全身 牽一頸 抬頭挺胸 為了保持人體正常的曲線(頸、腰椎 前凹及胸椎後凸),我常教病人做「縮 下巴」運動,理由很簡單,就是「反向 操作」,藉著下顎內縮,除了可矯正頸 椎過直外,整個脊椎曲線也會隨之挺拔 起來。此外,上班族出門常要提電腦包 或公事包,建議改用「後背包」,省力 又可防止上半身前傾或駝背。   頸、胸相 連,背駝也會影響頸椎曲度,做擴胸運 動之外,我還會請病人夾緊兩側肩胛骨 五至十秒。 電腦工程師、美髮師、作家等,因職 業的關係常需低頭工作或伏案打字,常 有頸椎相關毛病。許多牙醫或身為骨外 科醫師的我,也是頸椎病的高危險群。 平日看診長時間使用電腦、手機,開刀 時,多半也是「埋頭苦幹」。因此看診 或手術空檔,我會伸展脖子附近的肌肉 或按壓風池穴、舒緩筋骨。下班回家, 也是盡量拉筋,伸展整條「龍骨」,消 除肩、頸、腰部的緊繃。氣血、筋骨順暢, 自然就會頭清目明,減緩腰痠背痛。 頸椎術後如何保健?  醫療護腕推薦 平時多多注重三養──保「養」得宜、 營「養」適當、休「養」充足,大部分 人應可遠離頸椎病。若真不得已嚴重到 得開刀,手術後二健──保「健」、復 「健」更形重要。 保健 常「三吩咐、四交代」病人(尤其是 女性),術後三個月內最好能「離鼎離 灶」,因為煮飯、切菜的大動作容易牽 扯到尚待恢復肌力的頸、肩肌肉群,造 成痠痛;植入的支架也需一段時間的固 定才能達成骨融合目的。頸圈,不只是 支撐,同時也可提醒患者動作不能太大、 太快(比如急速轉頭)。 「保暖」也很 ...

使用電腦時,要記得讓螢幕畫面位於眼睛水平以下約12~25度,最低不可超過30度。尤其筆記型電腦螢幕與鍵盤相連,更容易低頭駝背,最好少放在腿上使用,或以書本將電腦墊高。 ●正確站姿。抬頭挺胸

 各項特製輪椅檢附由復健科或骨科或神經科或身障 醫療相關科別醫師開立之診斷書及評估表。詳附錄一。) □成人鋁合金特製輪椅(活動扶手、活動踏板) □鋁合金高背特製輪椅(活動扶手、活動踏板、升撥腳靠) □不銹鋼特製輪椅(活動扶手、活動踏板) □不銹鋼特製輪椅(活動扶手、升撥腳靠) □不銹鋼截肢型特製輪椅( 醫療護腕推薦 重心後移,活動扶手,活動踏板,升撥腳靠) □不銹鋼高背特製骨科輪椅(活動扶手、升撥腳靠) □不銹鋼高背特製輪椅(活動扶手、活動踏板) □不銹鋼加重型輪椅(固定扶手、固定踏板) 座寬 18 吋 □不銹鋼加重型特製輪椅(活動扶手、活動踏板) 座寬 18 吋 □不銹鋼加寬加重型輪椅(固定扶手、固定踏板) 座寬 20 吋 □不銹鋼加寬加重型特製輪椅(活動扶手、活動踏板) 座寬 20 吋 頸部及軀幹用支架 7.頸圈: 頸周長: 吋 肩高點至下巴: 吋 (如附圖) □頸圈(MIAMI J) (附量測表) □頸圈(硬式)* □頸圈(軟式) □四柱式頸支架(附量測表) □胸頸支架(附量測表) 8.圍腰: 肚臍圍: 吋 □圍腰(加強型) □圍腰(加強、加高型) □透氣型圍腰(單層) (圍腰類需附量測表) 9.背架 (附量測表) □透氣式騎士背架 □透氣式騎士泰勒背架 盥洗如廁輔具 10.□洗澡便盆兩用椅 醫師(職名章): 附錄三 11.足部輔具 11-1鞋 □矯正鞋(糖尿病用) * □特製矯型皮鞋* 11-2.鞋內墊 □鞋內墊 只(含製模) * □鞋內墊 只(不合製模) * □腳弓墊* □外(內) 楔墊* □足後跟矽膠墊 (附量測表) □全足矽膠墊(附量測表) □腳拇指外翻固定器(註明左、右側) □拇指外翻日間繃帶(註明左、右側) □拇指外翻夜間支架(註明左、右側) 12. 醫療護腕推薦 上下肢支架類 12-1□上肢支架-伸腕支架 (附量測表) 12-2□髖關節外展支架(可調整式) (註明左、右側) 12-3下肢支架 □髖膝踝足支架(直桿式) * □膝關節支架 □膝踝足支架(直桿式) * □髕骨承重支架* 12-4下肢踝足支架 □踝足支架(直桿式) * □踝足支架(PP式) * □踝足支架(PP量製式) * □足踝裝具(U.C.B.L) * 13.上下肢義肢(具肢障身障證明) 13-1.上肢義肢 □美觀性肘上義肢一左側 □美觀性肘上義肢一右側 □美觀性肘下義肢一左...

不銹鋼高背特製輪椅(活動扶手、活動踏板) □不銹鋼加重型輪椅(固定扶手、固定踏板) 座寬 18 吋 □不銹鋼加重型特製輪椅(活動扶手、活動踏板) 座寬 18 吋 □不銹鋼加寬加重型輪椅(固定扶手、固定踏板) 座寬 20 吋

 一般 <10 度 可視為正常範圍。 2. 中度脊椎側彎:側彎 20 度 ~ 40 度 or 50 度。 3. 重度脊椎側彎:側彎 > 40 度 or 50 度, 醫療護膝推薦 大人部份合併脊椎退化關節炎。若側彎>60 度 or 70 度, 常造成心肺功能障礙。 如何治療? 除了一般的觸、視診外,醫生會安排 X 光檢查,然後由 X 光片上判讀並測量脊椎側彎的角度, 依照所量出的角度(Cobb angle)我們可以知道側彎的程度,醫生可依此角度來決定病患應該接受的 治療。一般而言,小於 25 度只需要定期追蹤觀察;25 至 40 度則需要穿背架;大於 40 度者,為了 避免長大後側彎程度更嚴重,醫師大多會建議作手術治療。 先天性脊椎側彎指的是因脊椎發育 異 常, 例 如 半 椎 體 形 成(hemivertebrae formation),椎狀脊椎(wedge vertebrae) 或分節失敗(defect of segmentation),所 導致的脊椎彎曲,其方向可能在不同平面, 導致側彎或駝背等,其症狀差異頗大,比較 嚴重者出生時即被發現; 適當運動:頸部運動可以增強頸椎周圍的肌肉群,提高頸部的穩定性,減少頸椎受傷的風險。但是要注意選擇合適的運動方式, 避免過度使用頸部。避免承重過重:運輸或搬運物品時,應該注意負重不要過重,以減少頸椎的負擔。 總之,保護頸椎需要從日常生活的方方面面入手,注意姿勢、運動方式、睡眠姿勢等,避免過度使用頸部和過度負重, 能夠減少頸椎問題的發生,保護身體健康。 以下是一些容易導致 頸椎壓迫頸圈 問題的因素: 姿勢不良:長時間保持同一姿勢,尤其是低頭或彎腰的姿勢,會增加頸椎受壓的風險。 疼痛感會傳導至臀部或下肢,造成 下肢麻、痛、無力情形,產生坐骨神經痛。 3 (二) 治療: 1. 臥床休息:幫助背部肌肉放鬆,促進受傷肌肉修復,降低腰椎間盤的壓力,減輕神經的壓 迫及發炎。 2. 藥物治療:適當使用非類固醇類抗發炎藥、肌肉鬆弛劑,控制受傷後發炎反應。 3. 物理治療:包括電療、冷熱敷等,電療是利用電刺激, 醫療護膝推薦 使肌肉細胞規律運動,緩解肌肉硬 化及抽痛。冷敷適用於急性疼痛一、二天內,有止痛和消腫;而熱敷較適用於亞急性及慢 性期,改善局部循環,增進復原。 4. 背架、束腹:限制脊椎活動,保持良好姿勢,減輕椎間...

胰蛋白酶能繼續活化其他的酵素,如:胰凝乳蛋白酶、 彈性蛋白酶等3. 這些酵素都具有特定的作用位置 內激酶胰蛋白酶原胰凝乳蛋白酶原彈性蛋白酶 羧基胜肽酶 後端小腸(空腸、迴腸)會分泌胺基胜肽酶、雙胜肽酶

 半生期較短的蛋白質通常分子量較大,具有酸性pI值,在細胞的新陳代謝中擔任關鍵的調節角色*,且在試管內對熱或蛋白酶的實驗處理較為敏感 近年的研究發現蛋白質N端的 精氨酸 種類及特定序列(PEST)的數目與蛋白質的半生期有密切關係 - N端的胺基酸種類,穩定者(半生期>20小時)為 Met、Ser、Gly、Ala、Thr與Val,不穩定者(半生期7~30分鐘)為Arg、Lys、Asp、Leu與 Phe,高度不穩定者(半生期2~3分鐘)為Ile、Glu、 Pro、Tyr與Gln - 蛋白質的PEST (Pro、Glu、Ser、Thr)序列出現次數愈多,其半生期愈短 哺乳類細胞內蛋白質的半生期4. 絲胺酸 纈胺酸 半胱胺酸 甘胺酸 蛋白質的 4 級結構蛋白質需要經過一連串修飾和折疊才具有功用紅色的圈代表實際作用的 精氨酸 為什麼需要經過折疊才有用?以酵素為例) 依照人體所需分成 3 種人體無法製造的胺基酸 一定要由飲食中得到的人體在特定情形下無法製造戒無法製造足夠的胺基酸需從飲食補充 人體可以製造的 精氨酸  無需從飲食中得到的含有人體所有必須胺基酸的蛋白質稱為完全蛋白質戒優質蛋白質 小腸能分泌內激酶,能活化胰蛋白酶2. 胰蛋白酶能繼續活化其他的酵素,如:胰凝乳蛋白酶、 彈性蛋白酶等3. 這些酵素都具有特定的作用位置 內激酶胰蛋白酶原胰凝乳蛋白酶原彈性蛋白酶 羧基胜肽酶 後端小腸(空腸、迴腸)會分泌胺基胜肽酶、雙胜肽酶,繼續作用蛋白質和 精氨酸 ,最後被腸道吸收 所有可吸收的水溶性營養素,都會經過肝門靜脈到達肝臟代謝  精氨酸 雙胜肽三胜肽蛋白質的功用供給熱量 建構體組成 調節酸鹼 其他 胜肽可由其離子化行為加以區分胜肽僅具一個游離胺基與一個游離羧基,分別位於胜肽鏈狀結構兩端(圖3-15)。這些基團在胜肽中也如同它們在游離態時一樣可以離子化,但其解離常數不同於胺基酸,因為此時帶相反電荷之基團並非聯結在同一個α碳原子上。其他不在末端上的胺基酸之α-胺基與α-羧基均以肽鍵共價聯結在一起,因此無法離子化,也不會對胜肽之整體酸鹼行為作出任何貢獻。 顯示此四肽具有一個游離α-胺基、一個游離 α-羧基與兩個離子化 R 基團。在 pH 7.0 時可離子化基團以紅色表示。 四肽具生物活性的胜肽與多胜肽之大小差異甚鉅許多小分子胜肽在極低濃度就能發揮功效,如...

75大卡 蛋白質食物的紅綠燈低脂肉類每份含蛋白質7兊、脂肪3兊以下,55大卡 蛋白質食物的紅綠燈 低脂肉類每份含蛋白質7兊、脂肪3兊以下,55大卡 蛋白質食物的紅綠燈 低脂肉類每份含蛋白質7兊、脂肪3兊以下

 R. Bruce Merrifield 的關鍵新發明是將胜肽之一端連接在固相擔體上來進行合成反應。此固相支持物是一種不溶性的聚合物(樹脂),類似管柱層析實驗中所用的填充物。  胜肽就是在此固相擔體上以重複循環之標準反應組合將胺基酸殘基一個接一個依序聯結而成(圖3-29)。  在每個連續性的步驟中, 胺基酸 上的保護基可避免無謂的副反應發生。 老年人,丌論男女,蛋白質食物攝取量都減少,且動物性蛋白質攝取比例也減少 蛋白質食物的紅綠燈 蛋白質食物的紅綠燈 豆類每份含蛋白質7兊、 胺基酸 脂肪5兊,75大卡 蛋白質食物的紅綠燈低脂肉類每份含蛋白質7兊、脂肪3兊以下,55大卡 蛋白質食物的紅綠燈 低脂肉類每份含蛋白質7兊、脂肪3兊以下,55大卡 蛋白質食物的紅綠燈 低脂肉類每份含蛋白質7兊、脂肪3兊以下,55大卡 但精胺酸是代謝這些含氮廢物的重要 胺基酸  所以嬰幼兒奶粉會添加精胺酸含氮廢物 蛋白質的消化吸收 不具有消化蛋白質的酵素,但可以把蛋白質食物咬碎,增加消化時的表面積,可以幫助後續酵素作用 胃部具有胃酸和胃蛋白酶1. 胃酸會讓蛋白質變性,失去蛋白質的2、3級結構,以利後續消化 2. 胃蛋白酶會切特定位置的胺基3. 嬰兒具有凝乳酶 十二指腸是蛋白質主要的消化場所 有些胺基酸併入蛋白質後可經轉譯後修飾作用*加上其他官能基,此修飾作用與蛋白質的功能有關,如凝血因子與膠原蛋白等 蛋白質的大小-蛋白質分子量的範圍廣,如胰島素含51個胺基酸,細胞色素c含104個 胺基酸 ,血紅素含574個 胺基酸,肌聯蛋白(titin)則含26,926個胺基酸特殊胺基酸- 轉譯後修飾作用 4. 蛋白質的分類依外觀形狀與溶解度- 球狀蛋白,擔任功能性角色,以酵素最為重要 - 纖維狀蛋白,擔任結構支撐或保護性角色,如皮膚、韌帶、軟骨等構造的膠原蛋白,蠶絲的絲蛋白與頭髮的角蛋白等 胺基酸 序列的決定方法:將多肽以已知會切割特定肽鍵之試劑片段化成小胜肽;以自動化的艾德曼降解流程決定每個片段的胺基酸序列;藉由不同切割方法產生之胜肽片段的重複序列決定出各片段在原始蛋白質中之順序。蛋白質序列也可以由其相對應基因之 DNA 核苷酸序列推衍而得。  小分子蛋白質與胜肽(至多100個胺基酸殘基)可用 化學方法合成。合成胜肽是以一端固定在固相擔體上,由另一端依序加上一個個的 胺基酸 殘基。...

能達到作物施用全量肥料的效果。但是如果土壤養分不平衡,缺少的養分將成為作物生長限制因子,必須補充缺少的養分,維持土壤養分平衡,避免養分供應成為限制因子 ( 蔡, 2019)。 胺基酸代謝是果實發育的核心

 精胺酸與嘧啶形成之關聯已被動物 ( 老鼠 )實驗所證實 54。若飲食㆗缺乏精胺酸,則乳清酸產量大增甚至造成乳清酸尿產生。並且嘧啶生物合成相關之酉每活性增加並且導致嘧啶核 酸合成增加。最令㆟引起興趣的事食物缺乏精胺酸時,將導致 DNA 及 RNA 合成速率大幅減少 54。這些控制路徑之因子大體是複雜的、需要進㆒步來澄清的。然而目前證據指陳肝內精胺酸以及氨的濃度決定胺㆙基磷酸究竟是轉換成尿素或是嘧啶合成。 十、精氨酸與荷爾蒙分泌佛洛依德最先研究指陳㆟類大量攝取蛋白質食物以後會導致血漿㆗胰島素分泌增加 63。此項效應乃是攝取胺基酸之故 63。接㆘來之研究對象是健康自願者並且探討何種胺基酸具此種效應 63 。接受測試者皆空腹八小時,然後接受個別之 胺基酸灌注 ( 劑量從 2.5 至 30 克 ) 不等 63。或是 2 種至 10 種混合 胺基酸 灌注,實驗結果發現:各種必須胺基酸之混合注劑以及單獨精氨酸 ( 30 克 ) 注射最能引起胰島素分泌 63。注射期間,血糖質會㆖昇且高於正常值,但緊接著會㆘降低於正常值 63 。杜培首先評估精氨酸補充對於胰島素釋放之關係 64。此項研究主要是比較靜脈注射 15 克與十㆓指腸釋放精氨酸 ( 15 克 ) 對於循環㆗胰島素含量之影響 64。結果發現:腸胃道吸收路徑比注射路徑更能刺激胰島素分泌且較持久 64。意謂著:口服胺基酸更能促進腸胃道分泌荷爾蒙。為何注射胰島素則血糖質稍偏高?原因無它,仍是昇糖素分泌升高之故 65。其他研究也顯示精氨酸可促進胰島素胜酉每之荷爾蒙分泌 66。舉例來說,生長激素釋放抑制因子 ( SS ) 以及胰臟多胜月太對於精氨酸灌注皆會產生分泌效果 66。 在與O2的接合上,肌紅蛋白無協同性(雙曲線圖形),血紅素具協同性(“S”形曲線圖形)*,肌紅蛋白接O2的能力不受調節,血紅素接O2的能力受多種因素調節 血紅素的構形變化*- T構形(T state, tensed或taut)指血紅素分子結構較緊縮,為不接氧的形式(deoxy form),對O2的親和力弱 - R構形(R state, relaxed)指血紅素分子結構較膨鬆, 精氨酸 為接氧的形式(oxy form),對O2的親和力強 T構形 R構形 血紅素接O2時血基質鄰近區域構形的改變 苗栗地區胡瓜種植面積為 95 公頃、產量達 1,618 公噸,番茄種...

因此活性變化之間需其他酵素的參與* 阻害劑Amplification of signal磷酸化磷酸化 - 共價修飾的調控機制通常是細胞代謝受激素調節的方式,有訊號放大的效果 5. 其他機制與其他蛋白質的接合作用

 超分子結構的例子- DNA複製體(replisome)- 蛋白質降解體(proteasome)- 轉錄體(transcriptosome)- 凋亡體(apoptosome)- 發炎體(inflammasome)- ATP合成體(ATP synthasome)- 呼吸體(respirasome) 6. 維持蛋白質結構的作用力共價鍵結 - 如一級構造中的肽鍵與三四級結構中的雙硫鍵* 非共價作用力- 如二,三,四級結構中的氫鍵,離子鍵,凡得瓦爾力與疏水作用- 為弱的作用力,因此大部份蛋白質只能在溫和的環境(溫度, pH值)中發揮功能7. 蛋白質的變性(denaturation)蛋白質變性即是蛋白質因維持結構的作用力受破壞而失去特有的結構與活性 - 變性通常是蛋白質特有的構形遭受破壞,因此蛋白質變性有時是可逆的 牛胰臟分泌的RNase由124個胺基酸組成, 含有4個雙硫鍵 雙硫鍵 8. 蛋白質結構與功能的密切關係是由Anfinsen等人以核糖核酸水解酶(RNase)所進行的一系列實驗證明 RNase*含有124個 精氨酸 ,有4個雙硫鍵 - 當以還原劑及尿素處理RNase*時,雙硫鍵被還原,非共價作用力被破壞,RNase發生“變性” ,喪失水解RNA的活性 蛋白質(肝糖磷解酶)因特定胺基酸接上特定的化學基團(磷酸基)後而改變其活性, 精氨酸 此修飾作用屬共價鍵結的形成,因此活性變化之間需其他酵素的參與* 阻害劑Amplification of signal磷酸化磷酸化 - 共價修飾的調控機制通常是細胞代謝受激素調節的方式,有訊號放大的效果 5. 其他機制與其他蛋白質的接合作用- 如蛋白質激酶A (protein kinase A, PKA)*與調節次單元的接合 - 如調鈣蛋白(calmodulin)可調控受Ca2+調節的蛋白質或酵素 蛋白質的分佈(compartmentation或localization)- 如葡萄糖運輸蛋白的細胞表面受胰島素的影響 甘胺酸(Gly)含量佔1/3且富含脯胺酸(Pro)- 膠原蛋白的一級構造具有Gly-X-Y序列,其中X為 Pro,Y為Pro或Hyp (Gly佔35%,Pro或Hyp佔 21%) - Hyp為Pro經轉譯後修飾作用加上-OH,此修飾作用有助於維持蛋白質結構的穩定,修飾酵素的活性仰賴維生素C (抗壞血酸),維生素C嚴重...

所以嬰幼兒奶粉會添加精胺酸含氮廢物 蛋白質的消化吸收 不具有消化蛋白質的酵素,但可以把蛋白質食物咬碎,增加消化時的表面積,可以幫助後續酵素作用 胃部具有胃酸和胃蛋白酶1. 胃酸會讓蛋白質變性

 脯胺酸(proline)的脂肪族支鏈為特殊的環狀構造,其二級胺(亞胺)基團被固定在一個極為緊緻的構形中,因此含有脯胺酸的多區域其結構彈性會大幅降低。 芳香族 R 基團此類胺基酸包含苯丙胺酸(phenylalanine)、酪胺酸(tyrosine)與色胺酸(tryptophan)三種 此芳香族支鏈是相對較非極性的(疏水性的),三者均能參與疏水性交互作用。 色胺酸與 精氨酸 (苯丙胺酸則較差)會吸收紫外光 (圖3-6),這也是蛋白質在波長 280 nm 附近會有強吸光之成因。 但精胺酸是代謝這些含氮廢物的重要 精氨酸  所以嬰幼兒奶粉會添加精胺酸含氮廢物 蛋白質的消化吸收 不具有消化蛋白質的酵素,但可以把蛋白質食物咬碎,增加消化時的表面積,可以幫助後續酵素作用 胃部具有胃酸和胃蛋白酶1. 胃酸會讓蛋白質變性,失去蛋白質的2、3級結構,以利後續消化 2. 胃蛋白酶會切特定位置的胺基3. 嬰兒具有凝乳酶 十二指腸是蛋白質主要的消化場所 串聯的質譜分析 CD光譜分析 X光晶體繞射法 4. 蛋白質結構的預測Anfinsen等人的實驗證明“蛋白質的一級構造決定其立體結構”,而蛋白質的立體結構又與其功能息息 相關,因此如能由蛋白質的一級構造預測蛋白質的立體結構, 胺基酸 則蛋白質體計劃的研究將大大加速 蛋白質二級構造的預測- 目前多以分析已知結構的蛋白質中,各類二級構造中所出現的胺基酸種類為準* - 由Chou與Fasman於1974年提出,對每一種 胺基酸 當以適當條件移除還原劑及尿素時,RNase的活性可完全恢復,而重新折疊的RNase,所測得的物理或化學特性均和原的酵素相同 Anfinsen等人的實驗 Anfinsen等人的實驗中所有的處理皆不會破壞連接各胺基酸之間的共價鍵結(肽鍵), 精氨酸 即蛋白質的一級構造不受影響 - Anfinsen因此提出“蛋白質的一級構造決定蛋白質特定的立體構形”與“蛋白質的功能與其特有的構形有關”的論點 - 此論點確立蛋白質結構與功能的關係,促進以生物子為基礎探討演化過程的研究 顯示一級結構為一連串 精氨酸 以肽鍵相聯結 所形成之序列,通常也包含雙硫鍵之形成。一級結構所產生之多肽鏈可進一步形成二級結構組成元件,如 α-螺旋。α-螺旋是一個摺疊完成的多肽三級結構中的一部份,而三級結構可能只是一個多次單元蛋白質完整四級結構中的...

誤以為腰痛還沒好就繼續穿,形成惡性循環。除了先前提到因受傷或手術需要穿戴護腰,有些民眾聽信坊間流傳,認為從事搬運、工地等勞力工作,或長時間需站立,可以戴護腰保護脊椎、避免腰痛

 ★原則是縮下巴、後頸部往後 移,盡量呈後腦勺、肩膀及臀 部三點垂直。 開車: 勿坐太遠或太低。可使用坐墊 輔助坐高,並調整駕駛座。 ★勿伸長手臂駕車,另避免腰 酸背痛,可在腰部放小軟枕。 刷牙洗臉: 彎曲臀部及膝關節,低頭時仍 須保持頸、背部平直 醫療護腕推薦 。頸部勿 局部後仰或前屈。也就是盡量 保持彎膝勿彎腰的習慣。 工作、看書、寫字靠近桌子, 避免局部屈曲頸部。調整適當 桌椅高度,勿趴在桌上。避免 腰酸背痛,可在腰部放置小軟 墊。 3 (一)看書報、電視 重點說明 圖示 看書報、電視時,請採取良好 坐姿,不良姿勢會讓您的病況 更嚴重。 三、其他注意事項 (一)出院後, 醫療護腕推薦 醫師視病情需要給予不同頸架固定,有從軟頸圈到崁入頭骨的 固定支架。頸架使用時間,只要是起床活動開始即應戴著。在配戴頸 圈期間不宜做前屈及後仰的動作。 (二)至於需大多久?以及配戴方式,必須向醫師詢問,因為穿戴太久或太短 都不宜,而穿戴不正確也會使頸部更不舒服。 (三)在門診追蹤期間,醫師將追蹤 X 光片評估骨頭瘉合情形。對於有肢體活 動障礙者,則會轉介復健科繼續治療。 若有任何疑問,歡迎您與我們聯絡 光田綜合醫院 E185-95.03-100 張(自) 祝您 身體健康 萬事如意 審核日期 106.12 分機: 分機: 分機: 分機: [鍵入文字] 高雄榮民總醫院 神經外科 一般衛教文件 一、頸椎手術目的: (一)減壓。 (二)復位。 (三)固定。 二、手術前準備: (一)手術前主治醫師及麻醉科醫師會與您及家人會談,並填寫「手術同意 書」 、「麻醉同意書」。 追蹤個 人自二○○九年來以「融合手術」治療 的兩百多位頸椎病患者,臨床成效有超 過八成以上的滿意度。由此可見,頸椎 病即使嚴重到要動刀,病友們切勿驚 慌,但一定要和醫師配合,做階段性、 漸進式的治療。 頸椎病如何預防? 俗話說:「坐乎正,才會得人疼」「坐 有坐相,站有站相」,意即平日就得保 持正確姿勢, 醫療護腕推薦 才能遠離痠痛。道理很簡 單、明白,但就是很多人做不到,導致 產生許許多多的低頭族、烏龜脖、猿人 族。古代人所謂「案牘勞形」,對照現 代人,就是長期低頭使用電腦、手機而 影響身體健康。因此,電腦或筆電的高 度,一定要與眼睛視線同一水平。使用 手機、平板,也是儘量「以機就眼」, 避免低頭帶來的危害。 治療前的...

低頭族後續所衍生的問題不單單是令人詬病的視力問題,這些問 題包括了肌腱發炎、周邊神經病變、肩頸症候群、睡眠障礙及頸椎椎 間板突出或退化性疾症(俗稱骨刺),進而造成神經壓迫等。上述問 題最嚴重的莫過於頸椎退化性疾症

 總之,保護膝蓋的方法包括合理飲食、適度運動、穿戴適合的鞋子、避免長時間保持同一姿勢、避免劇烈運動、保持正確姿勢、定期檢查等。 膝蓋是人體一個重要的關節,承受了人體很大的負荷,因此容易受到傷害。如果膝蓋受傷了,需要及時進行治療,以防止症狀加重或導致其他並發症。 下面是一些常見的膝蓋受傷處理方法: 休息:如果 醫療護膝推薦 受傷,需要停止運動並休息,以免加重損傷。冰敷:在受傷後的48小時內,可以使用冰敷幫助減輕腫脹和疼痛。 將冰塊放在毛巾中,敷在膝蓋上每次20分鐘,每天3-4次。 高枕而眠:在睡覺時,可以將膝蓋墊高以減輕腫脹和疼痛。 有助於抗發炎的食物:綠花椰菜、抹茶、綠茶、薑黃、生薑、櫻桃等。富含維生素C的食物:木瓜、芭樂、柑橘、葡萄柚、哈密瓜、草莓、番茄等。 富含維生素D和鈣的食物:野生鮭魚、鱈魚、沙丁魚和蝦、金槍魚、牛奶或高鈣乳製品、雞蛋、優格、全穀麥片、豆腐等。富含生物類黃酮的食物:洋蔥、甘藍菜、韭菜、藍莓等。 富含Beta-胡蘿蔔素的食物:芥菜、甜菜、萵苣、菠菜、紅薯、冬瓜、香菜、薄荷葉、蘆筍等。▲不建議過度攝取的食物類別[2] 加工肉品:培根、火腿、熱狗、香腸、肉乾等。 關節炎支架 精緻碳水化合物:白麵包、蛋糕、義大利麵、白米飯、披薩等。酒精與含糖飲料:包含代糖飲料也不建議。 Omega-6脂肪酸:棕櫚油、芥花籽油、大豆沙拉油、葵花籽油等。如不確定自身適合攝取的食物及營養,建議可以尋求醫師及營養師的協助,依據個人狀況需求給予建議,您也可以參考下列這部影片,讓專業醫師教您如何從日常保健延長關節壽命。 (三)退化性關節炎容易找上這些人!好發族群與年齡報你知! 促進恢復:對於曾經受傷的膝蓋或者正在進行康復的人來說,護膝可以起到一定的支撐和保護作用,幫助加快恢復的速度。 護膝還可以幫助減輕運動後的疼痛和腫脹,加快肌肉和軟組織的恢復。 總之,護膝在運動時可以有效保護膝關節,減少運動員受傷的風險。不過,使用護膝也需要注意選擇合適的尺寸和品質, 並且在選擇和使用 醫療護膝推薦 時應咨詢專業人士的建議。 膝蓋是人體非常重要的一個關節,具有以下幾個主要的功能:  低頭族後續所衍生的問題不單單是令人詬病的視力問題,這些問 題包括了肌腱發炎、周邊神經病變、肩頸症候群、睡眠障礙及頸椎椎 間板突出或退化性疾症(俗稱骨刺),進而造成神經壓迫等。上述問 題最嚴重的莫過...

是一種用以計算蛋白質等電點(pI)的電泳方法(圖3- 21)。  利用小分子量有機酸鹼之混合物在電場中分布至膠體之特定區域以建立一個 pH 值梯度。當置入蛋白質混合物進行電泳分析時,每一種蛋白質均會泳動

 胱胺酸殘基其中一側的肽鍵以艾德曼降解法打斷時,仍可能藉由其雙硫鍵聯結到另一條多肽上。雙硫鍵也會干擾多肽以化學或酵素方法切割的過程。兩種將雙硫鍵不可逆打斷的方法如圖3-26 所示。 圖 3-26 顯示為兩種常用的方法:  精氨酸 以過氧甲酸 (performic acid)處理可將胱胺酸氧化成兩個磺基丙胺酸殘基;以二硫蘇糖醇(dithiothreitol)處理則可將胱胺酸還原成兩個半胱胺酸殘基,再進一步以碘乙酸(iodoacetate)將反應性強的游離硫醇基進行乙基化反應,以避免其再次氧化回復形成雙硫鍵構造。 圖 3-26 打斷蛋白質中之雙硫鍵。切割多肽鏈 有幾種方法可用來片段化一條多肽鏈。 蛋白質的功用麩醯胺酸壁細胞,免疫細胞的能量來源,在重症患者中的需求增加,因此在重症患者的營養品中常會添加,戒者額外自費購買麩醯胺酸粉 重症病患要丌要補充, 胺基酸 在醫界還是有爭議 蛋白質的功用蛋白質的功用 紅肉,白肉怎麼分 紅肉攝取量和大腸癌、心血管疾病、腦血管疾病、高血壓等發生風險為正向相關 有趣的是台灣最近的研究發現紅肉攝取量和總死亡率,心血管疾病死亡率,癌症死亡率  (a)已知分子量之蛋白質標準品經電泳分離如第一行所示,這些樣品蛋白質可用來估算未知蛋白質之分子量(第二行)。  (b)以分子量之對數值對相對電泳泳動率作圖可得到一線性關係,如此即可在圖中讀取未知蛋白質之分子量。 圖 3-20 估算待測蛋白質之分子量。  胺基酸 等電焦集法(isoelectric focusing,IF)是一種用以計算蛋白質等電點(pI)的電泳方法(圖3- 21)。  利用小分子量有機酸鹼之混合物在電場中分布至膠體之特定區域以建立一個 pH 值梯度。當置入蛋白質混合物進行電泳分析時,每一種蛋白質均會泳動到恰等於本身等電點之 pH 值所在(表3- 6)。  不同等電點之蛋白質就可以在這種膠體中分離開來。 管柱的固定相是由經過特殊處理而具有特定大小孔洞或孔隙之膠體顆粒組成,大分子蛋白質因為無法進入膠體之孔隙中,會以較直接而快速的方式繞過膠體流經管柱。小分子蛋白質則因為會進入膠體孔隙中,因此需要花較長的時間才能通過管柱(圖3-18b)。 圖3-18(b) 顯示大小-排除層析法利用蛋白質大小之差異進行分離。 精氨酸 管柱之固相基質為具有特定孔隙大小之交聯聚合物...

血紅素被O2飽和(接合)的程度愈高,如在肺部,pO2與pH值均高,大部分血紅素均被O2飽和,而在組織,pO2低且pH值因代謝產物及 CO2而降低時,血紅素與O2的接合減弱,因而可因應組織的需求而釋出O2供利用

 絲纖維蛋白富含甘胺酸與甲胺酸(Ala),且每兩個胺基酸就有一個甘胺酸出現纖維狀蛋白因具有特殊的一級結構(特定的 精氨酸 組成與排列)而形成特殊構造,再次驗證Anfinsen等人對蛋白質結構的形成與結構功能關係的論點 1. 蛋白質的構形變化蛋白質分子為dynamic分子以球狀蛋白為例- 分子的振動,如 精氨酸 側鏈的擺動*等,變化微小,有如“breathe”般 - 構形的變化(conformational change)*,變化較顯著,與蛋白質的活性或功能有關 2. 蛋白質構形變化的例子酵素與受質,血紅素與O2與肌肉收縮時肌凝蛋白與肌動蛋白(Ca+2的角色) (lysine),它在其脂肪族支鏈末端ε位置帶有第二個一級胺基;精胺酸(arginine)具有一個帶正電的胍 基團;另外則是帶有咪唑基團之組胺酸 (histidine)。 帶負電(酸性)R 基團在 pH 7.0 時 R 基團帶有淨負電的兩個胺基酸為天冬胺酸(aspartate)與麩胺酸(glutamate),兩者均具有第二個羧基。 特殊 胺基酸 也具有重要功能 除了20種常見胺基酸之外,蛋白質序列中也可能含有由常見胺基酸殘基經化學修飾作用產生的特殊胺基酸殘基(圖3-8a);這些特殊胺基酸包括 4-羥基脯胺酸( 4-hydroxyproline ; 脯胺酸的衍生物) 與 5-羥基離胺酸(5-hydroxylysine;離胺酸的衍生物),前者出現於植物細胞壁蛋白質中,兩者也都存在於膠原蛋白(一種結締組織之纖維狀蛋白質)中。 6-N-甲基離胺酸(6-N-Methyllysine)是肌球蛋白(肌肉組織的收縮蛋白)的組成份之一 即O2與任何一個次單元的接合會加速O2與其他次單元的接合 - 波爾效應描述pO2與pH值對血紅素與O2接合的影響, pO2愈高,pH值愈高,血紅素被O2飽和(接合)的程度愈高,如在肺部,pO2與pH值均高,大部分血紅素均被O2飽和,而在組織,pO2低且pH值因代謝產物及 CO2而降低時,血紅素與O2的接合減弱,因而可因應組織的需求而釋出O2供利用,但相同的條件下, 雙曲線“S”型曲線 pH值對血紅素與O2接合的影響 肌紅蛋白不具有四級構造,其對O2的接合不具協同作用,也不受pO2或pH值的影響 - 血紅素與O2的接合尚可受到2,3-BPG (2,3-bis- phosphoglycera...

從組織純化。此方法難度較高,尤其有些胜肽之含量極低 (2) 基因工程 (3) 直接以化學方法合成功能強大的技術開發,使得化學合成法成為最受歡迎的胜肽製備方法  除了商品化的應用,大分子蛋白質中局部特定胜肽片段的合成

 大多數蛋白質目前都以間接方法進行定序。然而若基因尚未取得時,胜肽片段之定序則是必要。  另外,雙硫鍵定位可以彌補 DNA 定序無法獲得的重要資訊。  事實上得知多肽中一小片段之胜肽序列也有助於對應基因之分離與定序。  精氨酸 小胜肽或蛋白質可用化學方法合成 得到胜肽的方法有三種: (1) 從組織純化。此方法難度較高,尤其有些胜肽之含量極低 (2) 基因工程 (3) 直接以化學方法合成功能強大的技術開發,使得化學合成法成為最受歡迎的胜肽製備方法  除了商品化的應用,大分子蛋白質中局部特定胜肽片段的合成,也成為蛋白質結構與功能研究愈來愈重要的實驗工具。 為比較芳香族 精氨酸 色胺酸與酪胺酸在 pH 6.0 時之吸收光譜,發現兩者在相等莫耳濃度之下(10-3 M),色胺酸之吸光值為酪胺酸的4倍;兩者之最大吸收波長則均接近 280 nm。另一種圖中未標示的芳香族胺基酸苯丙胺酸吸光值甚低,通常對蛋白質的光譜性質無貢獻。 圖 3-6 芳香族胺基酸可吸收紫外光。極性、不帶電 R 基團此類 精氨酸 遠較非極性胺基酸易溶於水,即其親水性較強;因為其 R 基團可以與水形成氫鍵。 此類胺基酸包含絲胺酸(serine)、酥胺酸(threonine)、半胱胺酸(cysteine)、天冬醯胺(asparagine)與麩胺醯胺(glutamine)五種 絲胺酸與酥胺酸之極性由其羥基提供 精氨酸是㆒種條件性必須胺基酸。它首先由德國舒茲及史坦茲在 1866 年以結晶型式首度被分離出來 2,3,10 年後 胺基酸 證實存在於動物組織㆗ 4,左旋精胺酸,對於年青哺乳類動物尿素平衡以及大幅度生長是絕對必須的 5。但對於年青健康小孩及成㆟ ( <40 ) 並非是絕對必須的 6,7。然而在特定嬰兒疾病㆗ (尤其在尿素循環系統酉每缺乏 ) 大部分是缺乏 L-精胺酸,皆會導致生長及發育遲緩 8,9。對於這些嬰兒 ( 尤其是鳥胺酸胺基㆙醯轉移酉每 ) 缺乏導致發育不良、行動遲緩的嬰兒及小孩使用精胺酸治療會改善發育情形 9。在特殊壓力情況㆘ ( 譬如:巨大創傷以及敗血症 ),血漿㆗精胺酸濃度是偏低的 ( 因為此種胺基酸被用來防止其他代謝路徑。而此種胺基酸內因性合成仍少;對於身體之需求量是不足夠 10 )。總之,胺基酸之新陳代謝尤其是精氨酸㆒氧化氮路徑對於㆟體健康與疾病之間扮演相...

是一種用以計算蛋白質等電點(pI)的電泳方法(圖3- 21)。  利用小分子量有機酸鹼之混合物在電場中分布至膠體之特定區域以建立一個 pH 值梯度。當置入蛋白質混合物進行電泳分析時,每一種蛋白質均會泳動到恰等於本身等電點

 (a)已知分子量之蛋白質標準品經電泳分離如第一行所示,這些樣品蛋白質可用來估算未知蛋白質之分子量(第二行)。  (b)以分子量之對數值對相對電泳泳動率作圖可得到一線性關係,如此即可在圖中讀取未知蛋白質之分子量。 圖 3-20 估算待測蛋白質之分子量。  精氨酸 等電焦集法(isoelectric focusing,IF)是一種用以計算蛋白質等電點(pI)的電泳方法(圖3- 21)。  利用小分子量有機酸鹼之混合物在電場中分布至膠體之特定區域以建立一個 pH 值梯度。當置入蛋白質混合物進行電泳分析時,每一種蛋白質均會泳動到恰等於本身等電點之 pH 值所在(表3- 6)。  不同等電點之蛋白質就可以在這種膠體中分離開來。 γ-羧基麩胺酸(γ-carboxyglutamate)也是一種相當重要的特殊胺基酸,存在於凝血蛋白凝血原及其他會與鈣離子結合的蛋白質中;鎖鏈離胺素(desmosine)則是一種較為複雜的特殊胺基酸,它是由四個 Lys殘基所組成的衍生物,存在於一種纖維狀蛋白質-彈性蛋白中。 硒半胱胺酸(selenocysteine)則是一種特殊的類型,這種特殊 胺基酸 殘基是在蛋白質生合成過程中即加入,而非經由合成後修飾作用產生的。它所含的是硒而非原本半胱胺酸的硫原子。 胺基酸可作為酸亦能作為鹼 當胺基酸溶於水時, 會以雙質子離子或兩性離子 當需要時會因一小段肽鏈被切除而具有活性 - 切除活化作用為一不可逆的調節方法3. 蛋白質的異位調節作用 胺基酸 此調節作用是多種代謝路徑中調節酵素或異位酵素的活性調控方式 胰蛋白酶 腸道生肽脢 - 如代謝路徑的終產物(調節劑)之回饋抑制調控* - 當調節劑與蛋白質的調節部位接合後,引發該部位的構形發生變化,此變化因四級結構中不同次單元的相互接觸而傳達到催化部位,因而改變催化部位的特性,使蛋白質的活性改變* - 以酵素為例, 胺基酸 較普遍的是改變酵素對受質的親和力,少數則是改變酵素的催化效率 4. 蛋白質的共價修飾作用肝糖代謝的調控為共價修飾作用的最佳例子 進一步抽取基因體 DNA 後,再根據 Sandström et al. (2001) 報告中所設計之universal 16S rDNA 引子對,10F:5’-AGTTTGATCATGGCTCAGATTG-3’、 1507R:5’- TACCTTGT...

為人體最天然之束衣 § 與脊椎後側的背肌透過筋膜相連 § 可保護脊椎並防止脊椎受到傷害 放掉不好力量的好處 § 體態變好 § 肌肉負擔變小,身體比較輕鬆 § 緊繃感覺消失 § 酸痛減少 § 進行活動下

  馮容芬(2007)‧手術全期護理之原則‧於劉雪娥總校閱,成人 內外科護理上(四版,245-260 頁)‧台北:華杏。 翁淑娟(2006)‧頸圈、頸架與背架的使用‧於李皎正總校 閱,內外科護理技術(三版 160-162 頁)‧台北:新文京。 備註:每年修訂或審閱乙次。 警語:所有衛教資訊內容僅供參考使用,無法取代醫師診斷與相關建議,若有 身體不適,請您儘速就醫,以免延誤病情。 28 人醫心傳2020.3 封面故事 而動全身 牽一頸 「交感型頸椎病」 (以下簡稱為「頸椎 病」)可以說是一個 現代人常犯的文明 病。頸椎雖然只短短 七節,但因特殊的解 剖結構及生理功能,  醫療護腕推薦 卻是我們人體最重要 的「樞紐」:上承顱 骨、頭腦、五官,下 接 軀 幹、 四 肢、 內 臟,外有層層筋膜、 肌肉、血管,內含感 覺、運動、交感神經 通路。位處人體要衝 地帶,功能自然非常 重要。但也因目標過 於顯露,易攻難守, 「病魔」環伺,時時 覬覦,必欲犯之而後 快, 包 括 急 性 的 車 禍、外傷、撞擊,慢 性的筋骨勞損、椎間 護頸保命 健頸強身 文/簡瑞騰 斗六慈濟醫院院長、大林慈濟醫院副院長 圖/于劍興、簡瑞騰醫師 治療前的自律神經症狀評估表。 29 人醫心傳2020.3 大林慈濟醫院交感型頸椎病治療 盤退化、關節錯位等等。 矯形支架:用於嚴重的關節炎,通常是一個定制的支架,能夠重塑受影響的關節,減少疼痛和不適感。 以上是一些常見的 關節炎支架 支架種類,具體的種類會因病情而異,患者應該在醫生的建議下選擇合適的支架。 關節炎是一種慢性疾病,無法完全治愈,但可以通過治療和管理症狀來控制和緩解疾病。 治療和管理方法包括: 藥物治療:包括非類固醇消炎止痛藥、疾病修飾抗風濕藥、生物製劑等。 物理治療:包括運動治療、物理療法、職業治療等,可幫助增強關節周圍的肌肉和組織,減輕疼痛和改善關節運動能力。 改變生活方式:如控制體重、避免過度使用關節、保持適當的運動和活動水平等,有助於減輕關節疼痛和緩解症狀。 §需透過適當的活動來促進椎間盤代謝 曲線回復運動 §每晚睡前在床上靜躺 20 分鐘 §可用毛巾捲捲成 20 公分及 15 公分 § 20 公分厚毛巾捲放在肚臍正 下方 § 15 公分厚毛巾捲放在肩膀上 方,頸椎下方的位置 該用力?還是該放鬆? 脊椎保健運動 - 肌力強化運...

仍請儘 量間歇躺臥。急性劇痛期,宜連續躺臥休息兩至三天,疼痛減輕後,對長期過度使用導致頸項 疼痛者,建議每二~四小時,躺臥休息十分鐘。 2 ¤ 運動治療 請依醫師及物理治療師之建議運動

  馮容芬(2007)‧手術全期護理之原則‧於劉雪娥總校閱,成人 內外科護理上(四版,245-260 頁)‧台北:華杏。 翁淑娟(2006)‧頸圈、頸架與背架的使用‧於李皎正總校 閱,內外科護理技術(三版 160-162 頁)‧台北:新文京。 備註:每年修訂或審閱乙次。 警語:所有衛教資訊內容僅供參考使用,無法取代醫師診斷與相關建議,若有 身體不適,請您儘速就醫,以免延誤病情。 28 人醫心傳2020.3 封面故事 而動全身 牽一頸 「交感型頸椎病」 (以下簡稱為「頸椎 病」)可以說是一個 現代人常犯的文明 病。頸椎雖然只短短 七節,但因特殊的解 剖結構及生理功能,  醫療護腕推薦 卻是我們人體最重要 的「樞紐」:上承顱 骨、頭腦、五官,下 接 軀 幹、 四 肢、 內 臟,外有層層筋膜、 肌肉、血管,內含感 覺、運動、交感神經 通路。位處人體要衝 地帶,功能自然非常 重要。但也因目標過 於顯露,易攻難守, 「病魔」環伺,時時 覬覦,必欲犯之而後 快, 包 括 急 性 的 車 禍、外傷、撞擊,慢 性的筋骨勞損、椎間 護頸保命 健頸強身 文/簡瑞騰 斗六慈濟醫院院長、大林慈濟醫院副院長 圖/于劍興、簡瑞騰醫師 治療前的自律神經症狀評估表。 29 人醫心傳2020.3 大林慈濟醫院交感型頸椎病治療 盤退化、關節錯位等等。 不適 脊椎側彎造成的問題與治療方式 背架可能造成的問題 § 無法改變對正確姿勢的認知 § 容易失去矯正後的效果 § 矯正主要彎度、犧牲次要彎度 § 沒有被背架包覆的部位可能更歪斜 § 無法讓人體的中心點同時往中間靠近 § 穿上背架後,軀幹可能更加歪斜 § 使脊椎及其周圍的肌肉變僵硬 背架可能造成的問題 § 無法改變對正確姿勢的認知 §  關節炎護膝 容易失去矯正後的效果 § 矯正主要彎度、犧牲次要彎度 § 沒有被背架包覆的部位可能更歪斜 § 無法讓人體的中心點同時往中間靠近 § 穿上背架後,軀幹可能更加歪斜 § 使脊椎及其周圍的肌肉變僵硬 背架可能造成的問題 § 無法改變對正確姿勢的認知 § 容易失去矯正後的效果 § 矯正主要彎度、犧牲次要彎度 § 可能會讓沒有被背架包覆的部位更加歪斜 § 無法讓人體的中心點同時往中間靠近 § 穿上背架後,軀幹可能更加歪斜 § 使脊椎及其周圍的肌肉變僵硬 背架可能造成的問題 § 無法改變對正確...

脊椎側彎的徵狀 人體的脊柱,包括七節頸椎、十二節胸椎、五節腰椎、五節薦椎、四節尾 椎所構成,正常人可以做前彎、後仰、左右側彎的動作。但脊椎側彎的患者,依 照其彎曲位置,可分為頸椎彎曲

 休息:如果長時間低頭或坐姿不良,容易引起頸部疼痛和僵硬。這時需要進行休息,避免長時間同一姿勢,可以起身走動或進行伸展運動。 注意姿勢:正確的姿勢可以幫助減少頸椎周圍的壓力。在使用電腦或手機時,需要保持頭部直立,肩膀放鬆,不要長時間低頭或抬頭。 綜合上述方法可以有效增強頸椎周圍的肌肉群,保持 頸椎壓迫頸圈 健康。但是,如果您有嚴重的頸椎問題,需要尋求醫生的建議和治療。 頸椎是人體非常脆弱的部位之一,因此需要特別的保護。以下是保護頸椎的一些方法: 預防脊椎退化的方法包括保持適當的姿勢、進行適度的運動、減輕過重的負擔、戒煙等。此外,注意飲食健康,攝取足夠的維生素D和鈣質 脊椎的功能是多方面的,包括: 支撐和 脊椎矯正器 保護神經組織 脊椎通過保護脊髓和神經根,支撐人體的神經系統。 支持身體的姿勢和運動 脊椎是支持人體姿勢和運動的主要結構。正確的姿勢和運動可以幫助減少脊椎受傷的風險。 緩衝和分散壓力 椎間盤可以緩衝和分散脊椎之間的壓力,減少脊椎受到的衝擊 脊椎復健是一種非手術治療方法,旨在通過運動、物理治療和其他治療方式來改善脊椎疾病和損傷。 頸椎壓迫頸圈 脊椎復健可以用於治療脊椎疾病, 如脊柱側彎、椎間盤突出、脊椎骨折、脊椎壓縮等,也可以用於減輕脊椎疼痛、增加柔軟性和強度、改善姿勢等。 藥物性的治療方法:首先是給予鎮痛劑(如:acetaminophen)或非類固醇類的鎮痛解熱劑(如:ibuprofen or naproxen sodium)。另外也可根據病情的需要,間歇性地給病人注射類固醇。 非藥物性的治療:則包括病人的教育、關節的復健運動(用以增加該關節的活動性和強度)、降低該關節的承重重量、以及給予適當的冷敷和熱敷。 而如果關節破壞到相當嚴重的程度, 關節炎支架 為了減低關節疼痛和重建關節的活動性,骨科手術則是必要的治療方式。一、為什麼會得到退化性關節炎?退化性關節炎病理與好發部位介紹! 根據衛福部資料顯示,規律的運動可以降低20%的癌症罹患率,但常常力不從心,覺得靈活力不足嗎?當下肢活動開始出現關節痠痛,或是僵硬、喀喀聲響等症狀時就要特別注意囉!除了關節退化之外,還有可能是關節疾病作祟!今天就來跟大家聊聊其中一項導致關節痠痛的原因:退化性關節炎。 (想知道另外2種可能的關節疾病是什麼,可參考這篇文章:膝蓋痠痛原因有哪些?醫師教您分辨膝蓋痠痛的 3 種可能病...

膠原蛋白與絲纖維蛋白此三種蛋白質均為扮演結構功能的纖維狀蛋白,通常由規則性的二級結構進一步組合形成特殊的構造 - 組成的構造具有強韌與穩定的特性,符合擔任保護與支撐的功能角蛋白

 化工廠把三聚氰胺賣給食品原料廠.食品原料廠將三聚氰胺混成蛋白精、蛋白粉,再賣給小型牛奶廠和酪農 酪農和小型牛奶廠將含有三聚氰胺的  胺基酸 蛋白粉加入牛奶中,以在較高金額的計價 4.大型乳業公司收購含有三聚氰胺的牛奶,並製成罐裝戒奶粉售出5.最後含有三聚氰胺的牛奶進到消費端 毒奶事件但實際上,中國的毒奶事件並丌是第一次爆發,早於前一年,美國就發生過許多寵物腎衰竭死亡,且在中國就有些零星通報, 胺基酸 但三鹿公司採取隱匿方式,並利用金錢買通媒體,將負面言論 刪除,並和消費者謊稱說他們買的是假貨毒奶事件 (lysine),它在其脂肪族支鏈末端ε位置帶有第二個一級胺基;精胺酸(arginine)具有一個帶正電的胍 基團;另外則是帶有咪唑基團之組胺酸 (histidine)。 帶負電(酸性)R 基團在 pH 7.0 時 R 基團帶有淨負電的兩個胺基酸為天冬胺酸(aspartate)與麩胺酸(glutamate),兩者均具有第二個羧基。 特殊 胺基酸 也具有重要功能 除了20種常見胺基酸之外,蛋白質序列中也可能含有由常見胺基酸殘基經化學修飾作用產生的特殊胺基酸殘基(圖3-8a);這些特殊胺基酸包括 4-羥基脯胺酸( 4-hydroxyproline ; 脯胺酸的衍生物) 與 5-羥基離胺酸(5-hydroxylysine;離胺酸的衍生物),前者出現於植物細胞壁蛋白質中,兩者也都存在於膠原蛋白(一種結締組織之纖維狀蛋白質)中。 6-N-甲基離胺酸(6-N-Methyllysine)是肌球蛋白(肌肉組織的收縮蛋白)的組成份之一 表面疏水的區塊3. 角蛋白,膠原蛋白與絲纖維蛋白此三種蛋白質均為扮演結構功能的纖維狀蛋白,通常由規則性的二級結構進一步組合形成特殊的構造 - 組成的構造具有強韌與穩定的特性,符合擔任保護與支撐的功能角蛋白- 角蛋白由兩股α-螺旋相互纏繞形成coiled coils*,其一級結構具有(a-b-c-d-e-f-g)n的序列,其中a與d為非極性胺基酸 - 頭髮的構造*含有共價的cross-links (雙硫鍵)- 燙髮(permanent wave)的原理與所含的 精氨酸  (具有-SH官能基)有關 膠原蛋白- 膠原蛋白的基本構造為特殊的三股螺旋狀構造 第一、所有只具一個α-胺基、一個α-羧基與一個非離子化 R 基之胺基酸其滴定曲...

酵素要達到三級結構才具有作用胃酸會使蛋白質變性,失去原有的三級戒二級結構 如果可以製作個耐酸外膜包覆酵素是否就有機會可以通過胃酸呢? 好消化、好順暢神清氣爽好健康採用特殊包覆劑型膠囊獲台灣製程

 酸形成 ( Nucleotides synthesis ) 精氨酸 治療 ( Amino acid therapy ) 表㆔:L-精氨酸對於荷爾蒙分泌之影響組織 荷爾蒙 胰臟 胰島素(insulin)昇糖素(glucagons)胰臟多胜月太(PP)生長激素釋放抑制因子(somatostatin) 腦㆘垂體 生長激素(GH)泌乳激素(prolactin)腎㆖腺 兒茶酚氨(catecholamines)表㆕:精氨酸灌注對於健康婦女生長激素之影響 前言自從〝㆒氧化氮〞觀念於 1998 年獲得諾貝爾醫學獎桂冠之後,精氨酸——㆒氧化氮路徑之神秘面紗就此掀開。 當要求較高之相同性時,最具保守性之胺基酸殘基往往會被過分呈現,而使得這些基質在用來辨識相關性較低之同源蛋白質時較不適用。  測試結果顯示 Blosum62  胺基酸 可提供範圍最大的蛋白質家族之可靠比對,因此它也成為許多序列比對軟體之系統原始設定表格。  圖3-31 顯示此區塊取代基質表是經由比較數以千計之序列比對小區塊所產生,這些小區塊之序列至少有 62% 完全相同。其餘不相同的殘基則被賦予一分數,說明它們被其他胺基酸殘基取代之頻率。  每次取代都對一次特定之比對分數有貢獻,正值(黃色標示者)會增加分數, 胺基酸 負值則會減去分數。比對序列中相同的殘基(自左上至右下角對角線黃色標示者)也因它們被取代的頻率產生一個分數。  具有特殊化學性質之 Cys 與 Trp 分別得到9與11分的高分,而較易在保守性取代中被替換之 Asp 與 Glu 則各有6與5分。  許多電腦程式利用 Blosum62 為新的序列比對打分數。 新鮮肉  精氨酸 急速冷凍緩慢冷凍有『效』素還是沒『效』素 酵素是種蛋白質自然界和人體中都有成千上萬種的酵素而酵素要達到三級結構才具有作用胃酸會使蛋白質變性,失去原有的三級戒二級結構 如果可以製作個耐酸外膜包覆酵素是否就有機會可以通過胃酸呢? 好消化、好順暢神清氣爽好健康採用特殊包覆劑型膠囊獲台灣製程專利新形第M414232號。本產品鳳梨酵素之活性單位高達2000G.D.U/g,有助維持 消化道機能、幫助消化、使排便順暢、促進新陳代謝,調 節生理機能。最後一點時間講講腰子和蛋白質攝取 還記得我一開始說的這個流程嗎? 含氮廢物就是體檢報告中的Blood Urine Nit...

組成將胜肽或蛋白質進行酸水解將生成游離 α-胺基酸之混合物。當完全水解時,每種蛋白質分別會產生特定比例之含有不同胺基酸之混合物。 所列為將牛細胞色素 c (Bovine cytochrome c)與胰凝乳蛋白酶原

 因為雞胸肉的脂肪含量更低 去皮雞胸清肉含脂量1.9%0.55克(佔脂肪的29%) 帶皮去骨雞腿含脂量16.9%5.3克(佔脂肪的29%)所以消費者選擇了一個很優質的肉類來源,再把它用不健康的烹調.....#再搭配不健康的飲料蛋白質食物的食品安全 先來講講雞品安全議題好了台灣人年消費43萬公噸,以一般上市體重1.9公斤計算,台灣年消費量約為雞長這麼快,一定有打生長激素!?精氨酸生理生化作用:它在㆟類健康與疾病之角色林廷燦國仁醫院 內科部高雄聯合門診㆗心高雄醫科大學暨美和護理技術學院摘 要精氨酸是㆟體必需胺基酸之㆒種。自從㆒氧化氮觀念風行后,多年來㆒直是基礎暨臨床研究之焦點。吾㆟深知精氨酸不管在㆟體或動物實驗深具生物、生化以及新陳代謝過程扮演相當重要之角色,包括聚胺、肌酸酐、尿素氮以及㆒氧化氮之形成、精氨以及嘧啶合成。它除了參與細胞與組織蛋白質形成外,精氨酸更能影響荷爾蒙之釋放以及核 酸之形成。這些很重要的生物效應促使精氨酸本身、前身以及相關代謝產物形成各種不同代謝路徑之相互作用,以及器官之間之〝溝通橋樑。事實㆖,精氨酸參與不同但同時發生之路徑,包括代謝物之排泄、肌肉代謝、血管調控以及免疫系統功能以及神經傳導,包括相關之 RNA 合成,還有荷爾蒙調控之內在機制。 本篇論文著眼於 精氨酸 食物來源暨需求之介紹、轉運的路徑及過程以及身體各器官之如何形成及代謝,其機轉以及分子生物醫學眼光細絲剝繭的解析。精氨酸各種代謝路徑及產物;這些生命過程㆗不可或缺的物質,包括㆒氧化氮在內之基礎暨臨床研究,終將解開㆟類健康與疾病之間之生理、生化、病理奧秘。 關鍵詞:左旋精氨酸 ( L-arginine )蛋白質合成 ( Protein-synthesis )荷爾蒙釋放 ( Hormonal release )核 蛋白酶(proteases)可催化鍵之水解切割,有些蛋白酶只切割連接在特定 精氨酸 殘基旁之肽鍵(表3-7),因此其切割產物之片段是可預測且具再現性的。另外也有幾種化學試劑可以切割連接在特定胺基酸殘基旁之肽鍵。 表 3-7 一些常見用以片段化多肽鏈方法之特性胜肽定序  每條由胰蛋白酶切割產生之胜肽片段均以艾德曼法 (Edman degradation)分別定序之 在此情況下,個別多肽鏈不管相同與否都不會被視為次單元,一般只當它是整個蛋白質結構中的一條鏈而已。 每種多肽均具...

用以評估比對之品質。這個過程有點複雜性存在,有時候進行比對之兩個蛋白質在某兩個序列片段配對良好,但這兩個片段之間是由較不相關且長度不同的序列相連接,因而造成這兩個配對良好之序列無法同時進行比對

 精氨酸是㆒種條件性必須胺基酸。它首先由德國舒茲及史坦茲在 1866 年以結晶型式首度被分離出來 2,3,10 年後 精氨酸 證實存在於動物組織㆗ 4,左旋精胺酸,對於年青哺乳類動物尿素平衡以及大幅度生長是絕對必須的 5。但對於年青健康小孩及成㆟ ( <40 ) 並非是絕對必須的 6,7。然而在特定嬰兒疾病㆗ (尤其在尿素循環系統酉每缺乏 ) 大部分是缺乏 L-精胺酸,皆會導致生長及發育遲緩 8,9。對於這些嬰兒 ( 尤其是鳥胺酸胺基㆙醯轉移酉每 ) 缺乏導致發育不良、行動遲緩的嬰兒及小孩使用精胺酸治療會改善發育情形 9。在特殊壓力情況㆘ ( 譬如:巨大創傷以及敗血症 ),血漿㆗精胺酸濃度是偏低的 ( 因為此種胺基酸被用來防止其他代謝路徑。而此種胺基酸內因性合成仍少;對於身體之需求量是不足夠 10 )。總之,胺基酸之新陳代謝尤其是精氨酸㆒氧化氮路徑對於㆟體健康與疾病之間扮演相當關鍵性角色。因此醫屆同仁有必要來㆒窺胺基酸新陳代謝之全貌,並且了解分子生物醫學之最新進展。 ㆓、精胺酸需求量暨食物來源㆟類 精氨酸 需求量多寡可用不同方式來測定。這些包括尿素氮平衡研究,血漿胺基酸之測量以及同位素追蹤測定,所有技術皆有其優缺點 11-13,不在本文討論 範圍。令㆟驚訝的是,㆟類維持正常生理運作功能需要多少胺基酸含量仍屬未 精氨酸 具相當強的刺激腦㆘垂體分泌荷爾蒙 67 。美梨米教授首先發現靜脈注射 30 克的精氨酸於正常㆟會誘發血漿生長激素荷爾蒙之增加 67。而此種反應在腦㆘垂體機能低㆘者付之闕如 67,而且在肥胖者 ㆗明顯減低 67。他們結論是:生長荷爾蒙之增加乃是精氨酸直接刺激於腦㆘垂體之故,認為這項試驗對於㆘視丘-腦㆘垂體之病變可做直接之診斷 ( 表 ㆕ )68。單獨使用精氨酸或是合併使用離胺基酸來刺激生長激素釋放已早有定論。日㆟石鳥氏等學者使用相當小的劑量 ( 1.2 克 )  精氨酸 ,以及使用精氨酸+離胺酸合併 ( 各 1.2 克 ) 69。給 15 位正常健康受測者,結果發現:單獨給予少量此兩種胺基酸並不能刺激生長激素釋放,但合併使用則可增加生長激素之釋放 69。㆒般而言,少量服用精氨酸並無直接刺激生長激素荷爾蒙 69。口服較大劑量 ( 4 克至 10 克 ) 在矮小之成㆟及小孩皆會增加生長激素之釋放 70-72。 精氨酸亦可使泌乳激素分泌...

長期坐姿宜選擇有靠背的椅子支持,保持腰部挺直,儘量避免坐矮板凳。 o 雖已穿著背架仍需儘量避免彎腰或提、拉重物,以免病情惡化,可利用雙腿 彎曲,蹲下撿物,保持腰部挺直以降低傷害

 或代償性曲線。 S 型 C 型 脊柱側彎的原因少數是先天脊椎畸形或神經 肌肉病變所造成,大部分是屬於脊柱在發育 過程中, 關節炎護膝 自行發生而原因不明的自發性脊柱 側彎,發生的部位可能在胸椎、腰椎、或胸 腰椎處。脊柱側彎的種類可分為功能性與結 構性兩種,所謂功能性或姿勢性的脊柱側 彎,是指雖然脊柱向側面彎曲,但脊椎並沒 有發生結構上的畸形,發生主要原因是由於 肌肉軟弱無力造成姿勢不良,而讓外觀上呈 現彎曲。經由運動和養成良好的新姿勢時, 便可使脊柱側彎情形改善;而結構性的脊柱 側彎,是指椎體產生脊柱之椎體側彎及向击 面旋轉,這類較難藉由運動來矯正。 脊柱側彎多好發在發育中的青少年,10-16 歲 孩童的盛行率為 2-4%。側彎角度大於 30 度 者,其盛行率約為 0.2%;側彎角度大於 40 度時,盛行率約為 0.1%。當側彎的角度小於 10 度時,男女罹病的比率差不多,但是當側 彎的角度大於 30 度時,女生罹病的比率約為 男生的十倍。此外脊柱側彎若發生在青春期 的女孩,角度常會持續惡化,因此女生患者 常較男生需要接受進一步的治療。一般而 言,脊柱側彎好發於有家族史、女性、青春 期和瘦長體行者。 如何診斷「脊柱側彎」? 診斷脊柱側彎,通常是用 X 光影像直接測量 側彎角度,雖然準確,但是並不符合篩檢的 經濟效益。臨床上可讓病人雙腳張開與肩同 寬,向前彎腰,背部與地面平行,雙手合掌 下垂,此時從病人背後觀察,可藉由兩側背 部不等高、兩側肩胛骨不對稱, 三.因情形特殊,經專案報請本會核准者,得不受申請年限之限制。惟附表內所列各項目輔具(助聽器、 眼鏡、義眼、其他醫療輔具等四項)以一年申請一次為限。 四.申請人應備之西醫健保合約醫療院所診斷證明書、聽力圖及驗光單,須符合自開具之日起三個月內 之期限。 附錄一 醫療輔具補助項目 項次 醫療輔具項目  醫療護腕推薦 單位 使用年限 受理機構 備註 一 手杖(鋁合金) 支 二年 榮民服務處、榮譽國民 之家、各級榮院 具效期內之肢體障礙(新制 ICF 第 七類 05)、平衡機能障礙(新制 ICF 第二類 03)或行動障礙證明者,得 以身心障礙證明正本或受理單位 出具評估紀錄表(附錄二)替代診 斷書。 二 手杖(不銹鋼) 支 二年 榮民服務處、榮譽國民 之家、各級榮院 具效期內之肢體障礙(新制 ICF 第 七...

支撐人體的神經系統。 支持身體的姿勢和運動 脊椎是支持人體姿勢和運動的主要結構。正確的姿勢和運動可以幫助減少脊椎受傷的風險。 緩衝和分散壓力 椎間盤可以緩衝和分散脊椎之間的壓力

 預防脊椎退化的方法包括保持適當的姿勢、進行適度的運動、減輕過重的負擔、戒煙等。此外,注意飲食健康,攝取足夠的維生素D和鈣質 脊椎的功能是多方面的,包括: 支撐和 脊椎矯正器 保護神經組織 脊椎通過保護脊髓和神經根,支撐人體的神經系統。 支持身體的姿勢和運動 脊椎是支持人體姿勢和運動的主要結構。正確的姿勢和運動可以幫助減少脊椎受傷的風險。 緩衝和分散壓力 椎間盤可以緩衝和分散脊椎之間的壓力,減少脊椎受到的衝擊 脊椎復健是一種非手術治療方法,旨在通過運動、物理治療和其他治療方式來改善脊椎疾病和損傷。 頸椎壓迫頸圈 脊椎復健可以用於治療脊椎疾病, 如脊柱側彎、椎間盤突出、脊椎骨折、脊椎壓縮等,也可以用於減輕脊椎疼痛、增加柔軟性和強度、改善姿勢等。 用熱毛巾敷10~20分鐘,就可讓頸部肌肉快速獲得放鬆。 ●運動前一定要先做脖子的暖身,尤其游泳、跳舞、羽球、高爾夫等。跳舞若有甩頭的動作,先做完六個方向的伸展後,再輕輕做360度旋轉暖身。搭雲霄飛車時,頭部也要緊貼倚靠椅背,以免頸部甩傷。 ●急性落枕或頸部被東西擊到時,最好立刻冰敷10~15分鐘,再用溫水熱敷。無法熱敷交替時,也可持續冰敷。可隨手找塑膠袋或向街上店家要些冰塊與冷水,讓冰袋可隨著頸部形狀伏貼。 5式 醫療頸圈 護頸操讓足球選手也羨慕你把握休息時間,做做護頸操,鍛鍊肌肉的肌群也有助於放鬆僵硬的肌肉,使頸部恢復柔軟度,讓全身的經絡痛暢,從此疼痛不上身。 1利用打電腦或看電視的時間,用米袋*放在頭頂上。背脊挺直收下顎,雙眼直視前方,持續20分鐘左右,可以訓練頸部的控制力與肌力。但不適時就應去看醫生。 *米袋重量(kg)=體重(kg)×0.032開車時,將頭部緊貼椅背頭靠,用脖子的力量向後方頂,可訓練脖子後方的肌肉。 在脊椎側彎中度症狀的患者,則醫師會建議利用背架治療。因此背架是中 度病患最常被使用的治療方式(註二十五)。 關節炎護膝 背架的種類很多,而且還不斷的有 新的發明。由於矯正所根據的學理不同,可分為硬式背架及軟式背架。硬式背架 包括最有名的波士頓(Boston)背架、密爾瓦基(Milwatlkee)背架、大阪(Osaka) 醫科大學式背架、查理斯登(Charleston)背架,其中,查理斯登背架屬於在晚 間穿戴使用(註二十六)。 一般認為,硬式背架治療效果比軟式背架的效果好。但是硬試背架無法自 己穿戴,...

可能需要物理治療,如超聲波治療、電刺激和按摩等。這些治療可以減輕疼痛、腫脹和僵硬,並促進手腕的恢復。 藥物治療:疼痛和腫脹嚴重時,可以使用非類固醇消炎藥或止痛藥來緩解症狀

 瘀傷和僵硬等症狀。治療方法取決於傷害的嚴重程度,以下是一些可能的治療選項: 休息和冰敷:在受傷後的前24至48小時內,休息和冰敷可幫助減輕腫脹和疼痛。可以在傷口周圍輕輕地用冰袋或冷毛巾冰敷,每次10到20分鐘,每天多次。 復健運動:當手腕恢復穩定後,可以進行一些適當的復健運動,如旋轉手腕、伸展手腕和手指等。這有助於恢復手腕的靈活性和力量。 物理治療:如果 醫療護腕 傷害較嚴重,可能需要物理治療,如超聲波治療、電刺激和按摩等。這些治療可以減輕疼痛、腫脹和僵硬,並促進手腕的恢復。 藥物治療:疼痛和腫脹嚴重時,可以使用非類固醇消炎藥或止痛藥來緩解症狀。但是,請務必按照醫生的指示使用藥物,因為某些藥物可能會有副作用。 手術:如果手腕傷害非常嚴重,可能需要手術來修復受損的組織。這通常是一個選擇性的治療,只有在其他治療方法無效時才會進行。 總之,手腕扭傷或拉傷需要根據傷害的嚴重程度進行適當的治療。輕微的傷害可以通過休息、冰敷和復健運動自行恢復,而較嚴重的傷害可能需要藥物治療、 物理治療或手術。如果您有手腕傷害,請及時向醫生 一般 <10 度 可視為正常範圍。 2. 中度脊椎側彎:側彎 20 度 ~ 40 度 or 50 度。 3. 重度脊椎側彎:側彎 > 40 度 or 50 度, 醫療護膝推薦 大人部份合併脊椎退化關節炎。若側彎>60 度 or 70 度, 常造成心肺功能障礙。 如何治療? 除了一般的觸、視診外,醫生會安排 X 光檢查,然後由 X 光片上判讀並測量脊椎側彎的角度, 依照所量出的角度(Cobb angle)我們可以知道側彎的程度,醫生可依此角度來決定病患應該接受的 治療。一般而言,小於 25 度只需要定期追蹤觀察;25 至 40 度則需要穿背架;大於 40 度者,為了 避免長大後側彎程度更嚴重,醫師大多會建議作手術治療。 先天性脊椎側彎指的是因脊椎發育 異 常, 例 如 半 椎 體 形 成(hemivertebrae formation),椎狀脊椎(wedge vertebrae) 或分節失敗(defect of segmentation),所 導致的脊椎彎曲,其方向可能在不同平面, 導致側彎或駝背等,其症狀差異頗大,比較 嚴重者出生時即被發現; 使用護具:在進行劇烈運動時,可以使用膝蓋護具來支撐膝關節,減少對膝蓋的衝擊,從而減少膝蓋...

蛋白質序列與演化Protein Sequences and Evolution  每一種蛋白質的功能決定於其三度空間結構,而此三度空間結構則大部分由其一級結構決定。  由蛋白質序列所傳達的生化資訊,主要侷限於對蛋白質結構

  精氨酸 序列的決定方法:將多肽以已知會切割特定肽鍵之試劑片段化成小胜肽;以自動化的艾德曼降解流程決定每個片段的胺基酸序列;藉由不同切割方法產生之胜肽片段的重複序列決定出各片段在原始蛋白質中之順序。蛋白質序列也可以由其相對應基因之 DNA 核苷酸序列推衍而得。  小分子蛋白質與胜肽(至多100個胺基酸殘基)可用 化學方法合成。合成胜肽是以一端固定在固相擔體上,由另一端依序加上一個個的 精氨酸 殘基。 3.5 蛋白質序列與演化Protein Sequences and Evolution  每一種蛋白質的功能決定於其三度空間結構,而此三度空間結構則大部分由其一級結構決定。  由蛋白質序列所傳達的生化資訊,主要侷限於對蛋白質結構與功能的瞭解。  當以不同角度探討時,蛋白質序列將能告訴我們蛋白質是如何演化的,甚至這個星球上的生命是如何演化的。 胺基酸 序列的決定方法:將多肽以已知會切割特定肽鍵之試劑片段化成小胜肽;以自動化的艾德曼降解流程決定每個片段的胺基酸序列;藉由不同切割方法產生之胜肽片段的重複序列決定出各片段在原始蛋白質中之順序。蛋白質序列也可以由其相對應基因之 DNA 核苷酸序列推衍而得。  小分子蛋白質與胜肽(至多100個胺基酸殘基)可用 化學方法合成。合成胜肽是以一端固定在固相擔體上,由另一端依序加上一個個的 胺基酸 殘基。 3.5 蛋白質序列與演化Protein Sequences and Evolution  每一種蛋白質的功能決定於其三度空間結構,而此三度空間結構則大部分由其一級結構決定。  由蛋白質序列所傳達的生化資訊,主要侷限於對蛋白質結構與功能的瞭解。  當以不同角度探討時,蛋白質序列將能告訴我們蛋白質是如何演化的,甚至這個星球上的生命是如何演化的。 目前已知此28個胺基酸和細胞色素c的功能有密切的關係,只要任一個胺基酸被其他種類的 胺基酸取代時皆會影響細胞色素c的功能當比較不同物種的細胞色素c的 精氨酸 序列時,發現不同物種間的序列差異程度與其親緣關係有一定的比例關係*- 如人的細胞色素c胺基酸序列與黑猩猩的完全相同, 與其他哺乳類有10個胺基酸的差異,與爬蟲類有14個差異,與魚類、軟體動物、昆蟲與酵母或高等植物則分別有18個、29個、31個與40個以上的差異 - 分析細胞色素c的胺基酸序列差異所建構的“演化樹”(phy...

由於分子生物醫學之突飛猛進以及基因遺傳學之興起。吾㆟必須正式預防醫學之突破性治療包括胺基酸治療以及基因療法。而胺基酸之代謝及㆟體蛋白質、核 酸、基因形成息息相關。因此本㆟不揣簡陋將精氨酸合成代謝之來龍去脈

 2,3-BPG對血紅素與O2接合的影響  精氨酸 T構形Binding pocket disappears BPG與deoxy血紅素的接合 R構形 2.與血紅素相關的疾病鐮形細胞貧血症(sickle-cell anemia)*- 此病症為一“molecular disease”,由Pauling於 1949年提出的 - Sickle-cell hemoglobin (HbS)分子,其β次單元的 Glu6(側鏈帶負電)因突變置換為Val6 (側鏈為疏水) 地中海型貧血症(thalassemias)- α-Thalassemias (甲型, β4或γ4),其α次單元有缺失 - β-Thalassemias (乙型),其β次單元有缺失 γ-羧基麩胺酸(γ-carboxyglutamate)也是一種相當重要的特殊胺基酸,存在於凝血蛋白凝血原及其他會與鈣離子結合的蛋白質中;鎖鏈離胺素(desmosine)則是一種較為複雜的特殊胺基酸,它是由四個 Lys殘基所組成的衍生物,存在於一種纖維狀蛋白質-彈性蛋白中。 硒半胱胺酸(selenocysteine)則是一種特殊的類型,這種特殊 精氨酸 殘基是在蛋白質生合成過程中即加入,而非經由合成後修飾作用產生的。它所含的是硒而非原本半胱胺酸的硫原子。 胺基酸可作為酸亦能作為鹼 當胺基酸溶於水時, 會以雙質子離子或兩性離子 未經分離之蛋白質亦可被定量 如果純化對象是酵素,可取樣品溶液或組織萃取液進行催化活性分析。亦即當酵素存在下反應基質被轉換為產物之反應速率增加情形。  我們必須知道催化全反應之方程式、定量基質消失或  精氨酸 產物生成之分析方法、酵素作用時是否需要輔因子如金屬離子或輔酶的參與、酵素活性與基質濃度之關係、最適 pH 值與酵素保持穩定與最高活性的溫度範圍。  酵素通常在其最適 pH 值與溫度 25~38℃ 範圍中 進行活性分析。同時所使用之基質濃度會較高,因為可以使實驗測得之催化反應初速度與酵素活性成正比。  活性(activity)是指溶液中的總酵素單位數  比活性(specific activity)則是每毫克總蛋白之酵素單位數  比活性可用以評估酵素純度,隨著純化步驟逐步提升,酵素完全純化後會達到最大恆定值(表3-5)。 換言之, 精氨酸 -㆒氧化氮之路徑以及對於個別器官系統的...

單醣與胺基酸的絕對組態都是用 D,L 系統(見圖3-4)加以命名的。 圖3-4 的這些結構透視式中,將碳原子作垂直排列,光學對稱原子則置於中央;碳原子從最接近末端醛基 或羧基者(紅色)開始以1至3從上至下編號

 蛋白質食物的紅綠燈中脂肉類每份含蛋白質7兊、脂肪5兊75大卡高脂肉類每份含蛋白質7兊、脂肪10兊,120大卡 蛋白質食物的紅綠燈超高脂肉類每份含蛋白質7兊、脂肪10兊以上,135大卡 蛋白質食物的食品安全肉是什麼顏色才正常 肉是什麼顏色才正常 有注意過肉品櫃的燈光是什麼顏色嗎?  精氨酸 肉是什麼顏色才正常你會買哪一個?實際上,這兩種肉都是正常的 肉是什麼顏色才正常變性肌紅蛋白氧合肌紅蛋白脫氧肌紅蛋白 在中國造成近四萬的嬰幼兒就醫,根據新華網的報導,其中兩歲以內的嬰兒佔了 81.87%。二至三歲的幼兒佔了 17.33%,三歲以上幼兒佔了0.8%毒奶事件評斷奶粉的品質優劣, 胺基酸 和蛋白質含量有很大的關係,過去常用的檢測法為凱氏定氮法 三聚氰胺 因為三聚氰胺帶有很多的氮,所以在凱氏定氮法中出現檢測盲點,檢測數據含氮量很高,但這個氮丌是來自於蛋白質,而是來自於三聚氰胺 毒奶事件 (圖片摘自華爾街日報中文網路版) 為了明確定義這非對稱碳原子上的四個取代基之絕對組態(absolute configuration),我們使用了另一套特殊的命名法;單醣與胺基酸的絕對組態都是用 D,L 系統(見圖3-4)加以命名的。 圖3-4 的這些結構透視式中,將碳原子作垂直排列,光學對稱原子則置於中央;碳原子從最接近末端醛基 或羧基者(紅色)開始以1至3從上至下編號。 胺基酸之R基團將固定出現在α碳的下方,L-胺基酸 之α-胺基位於左方,D-胺基酸之α-胺基則位於右方。 圖 3-4 丙胺酸立體異構物與 L-和 D-甘油醛之絕對組態間之立體關係。 蛋白質中之 精氨酸 殘基均為 L-型立體異構物 幾乎所有具對掌中心的生物化合物都僅以一種立體異構物的狀態天然存在,非 D 即 L。  蛋白質分子中的胺基酸殘基就都是 L 型異構物 D 型胺基酸殘基僅在細菌細胞壁中極少數胜及特定胜抗生素中被發現。 蛋白質與親和基的接合多經由非共價作用力,因此接合為一可逆的過程每個蛋白質與同一種親和基的接合可發生在分子內的一個或多個部位 - 如發生在多個部位時,與同一種親和基接合的能力可能相同或不同,因此產生了接合的協同性,此種關係稱為同質性效應,如血紅素與O2的接合 一個蛋白質分子內也可有不同種類的親和基接合部位- 不同親和基的接合部位在親和基接合時,會有相互溝通(cross-talk)的特...

天冬醯胺與麩胺醯胺則由其醯胺基提供。 monosodium glutamate(麩胺酸-鈉) — 味素成分 兩分子半胱胺酸很容易經由氧化作用形成具有雙硫鍵結之產物胱胺酸(cystine)(圖3-7),此經由雙硫鍵聯結之殘基則變得極為疏水性

 胺基酸簡介胺基酸基本結構是含㆒胺基 ( NH2 ) 以及㆒羧基 ( COOH ) 以及㆒氧原子連結 2 個碳原子。附屬部分 ( R ),稱之為副鍵,通常它表現出每㆒胺基酸獨特之功能及屬性。此項結構對於所屬 胺基酸 ㆒體通用,僅有甘胺酸為同質異構。世㆖有超過 300 種胺基酸存在,但僅有 20 種存在於動物性蛋白質(甘胺酸除外)皆是左旋結構。傳統㆖胺基酸存於動物蛋白質並分為必須胺基酸及非必須胺基酸兩類 ( 見表㆒ )。必須胺基酸無法內因性合成因此在食物㆗攝取是必須的。另類非必須胺基酸意指可在㆟體內合成,此兩大群胺基酸對於尿素平衡以及正常組織生長及新陳代謝維持是必須的。飲食攝取以及身體本身合成胺基酸以利維持整體胺基酸含量。多餘量之胺基酸從尿量排除。若從皮膚、糞便排出過多之胺基酸,就會產生非蛋白合成代謝路徑之先前產物,產生不可逆的變化以及不可還原之氧化反應。食物胺基酸之不平衡供應會導致組織修復減緩的結果。然而過多攝取或特殊胺基酸存在會導致組織及器官毒性。吾㆟已知在特殊情況㆘ ( 譬如:敗血症、創傷、成長 ),內因性可以合成之胺基酸,統稱為非必須性。後者對於㆟體尿素需求是不充足的。也因此,除非這些胺基酸存在於食物㆗,不正常的組織蛋白質代謝終究會發生。而這些胺基酸通常基本㆖會被稱為〝必須的。也因此大部分胺基酸大體分為必須及非必須兩類。事實㆖,係有㆔種胺基酸 ( L-胺基㆛酸、L- ㆝門冬酸及 L-麩胺酸 ) ㆔者皆可經由胺基轉移作用反應來產生,此㆔種乃真正是非必須的 1。 甘胺酸(Gly)含量佔1/3且富含脯胺酸(Pro)- 膠原蛋白的一級構造具有Gly-X-Y序列,其中X為 Pro,Y為Pro或Hyp (Gly佔35%,Pro或Hyp佔 21%) - Hyp為Pro經轉譯後修飾作用加上-OH,此修飾作用有助於維持蛋白質結構的穩定,修飾酵素的活性仰賴維生素C (抗壞血酸),維生素C嚴重缺乏會導致 壞血病(scurvy)- Ehlers-Danlos syndrome即因甘胺酸被置換成側鏈較大的 胺基酸 ,因此三股螺旋狀構造不穩定,與習慣性脫臼有關 絲纖維蛋白- 絲纖維蛋白形成β-褶片構造,且層層相疊* 半胱胺酸由其 硫醇基提供;天冬醯胺與麩胺醯胺則由其醯胺基提供。 monosodium glutamate(麩胺酸-鈉) — 味素成分 兩分子半胱胺酸很容易經由氧化作...

脊椎側彎的徵狀 人體的脊柱,包括七節頸椎、十二節胸椎、五節腰椎、五節薦椎、四節尾 椎所構成,正常人可以做前彎、後仰、左右側彎的動作。但脊椎側彎的患者,依 照其彎曲位置,可分為頸椎彎曲

 坐姿扭轉:坐在椅子上,雙手放在膝蓋上方。慢慢轉動上半身,向右轉到極限,保持5秒鐘,然後向左轉到極限,保持5秒鐘。重複此動作10次。 前屈伸展:站立,雙腿舒展開,舉起雙手向上伸展。然後向前彎曲身體,伸展腰部 醫療護腰 。保持5秒鐘,然後緩慢站起來。重複此動作10次。 這些伸展運動可以在復健期間進行,也可以作為預防措施來進行。重要的是,要確保在進行伸展運動時,不要過度拉伸或用力。 如果感到任何不適,應停止運動並尋求專業意見。同時, 2. 增加身體組織延展性、柔軟度。 3. 增加關節活動度。 4. 強化肌肉肌力和耐力。 5. 改善肢體活動的協調性及靈活度。 6. 適當保護避免反覆受傷。 肆、搬運作業人員之職業性肌肉骨骼傷病健康管理 搬運作業人員之職業性肌肉骨骼傷病健康管理: 一、搬運作業人員防範對策 (一)雇主注意事項 1. 雇主對搬運作業環境規劃, 醫療護膝推薦 注意工作檯的高度及深度,避免長期彎腰或伸長身體姿勢。 2. 貨物擺放環境動線,減少不必要的雜物推放。 3. 搬運作業排班作息採輪調制度,避免長期同一反覆性工作,降低暴露風險等。 4. 規定每件搬運物體最大體積及重量上限。 5. 提供及訓練員工正確使用機械輔助設備,如:手推車、千斤頂、升降機、搬運車、起重機 等,減少體力負擔。 7 6. 教導員工腰背保健衛生教育,正確搬運姿勢,施力方式,並利用運動練習養成習慣,推廣 工作前或中間休息時間做健身柔軟體操。   身心動作教育課程應用於開發學童覺察能力與改善 脊柱側彎效果之研究。國立臺東大學教育研究所。頁 47。 註二十四、孫鴻明(2007)。分析胸椎脊椎側彎術後結果之影響因子與臨床探討。 私立長庚大學機械工程研究所。頁 5-6。 註二十五、鄭芳欣(2008)。不同椎體旋轉角度與施力條件對脊柱側彎之矯正果 影響-有限元素分析。國立陽明大學物理治療暨輔助科技學系。 關節炎護膝 頁 10。 註二十六、同註二十五。 註二十七、鄭芳欣(2008)。不同椎體旋轉角度與施力條件對脊柱側彎之矯正效 果影響-有限元素分析。國立陽明大學物理治療暨輔助科技學系。 頁 11。 註二十八、林育姍、胡榮和、胡雅珍、樊惠瑜(2009)。背架的種類及其功能。 2014 年 10 月 10 日,取自 http://blog.xuite.net/wdt5861/twblog/130104764...

頸圈復健是一種有效的 頸圈復健的時間因人而異,取決於頸椎問題的嚴重程度、復健計劃的頻率和持續時間以及個人生理狀況等因素。 通常,頸圈復健需要持續進行幾周或幾個月,並建議在專業醫療人員的指導下進行。 在復健期間

 穩定:支架可以穩定身體的某個部位,以減少活動時的不穩定性和風險。 保護:當身體的某個部位需要保護時,如受傷的關節或骨骼,支架可以提供額外的保護,防止進一步受傷。 支架有很多種類,包括固定 關節炎支架 、彈性支架、調整型支架等。不同的支架具有不同的功能和適用範圍,需要根據患者的狀況和需求進行選擇。 醫療支架(Medical brace)是一種醫療器械,通常由柔軟且耐用的材料製成,如彈性纖維、泡沫、塑料、金屬等。 它們可以被穿戴在身體的某些部位,如關節、脊椎等,以支撐、穩定、保護和減輕身體的負擔,並協助治療和康復。 促進恢復:對於曾經受傷的膝蓋或者正在進行康復的人來說,護膝可以起到一定的支撐和保護作用,幫助加快恢復的速度。 護膝還可以幫助減輕運動後的疼痛和腫脹,加快肌肉和軟組織的恢復。 總之,護膝在運動時可以有效保護膝關節,減少運動員受傷的風險。不過,使用護膝也需要注意選擇合適的尺寸和品質, 並且在選擇和使用 醫療護膝推薦 時應咨詢專業人士的建議。 膝蓋是人體非常重要的一個關節,具有以下幾個主要的功能: 乃由七節的頸椎椎體及椎 間盤環繞保護。 頸椎病變之致病因素相當多,包括發炎、腫瘤、血管異常、先天結構異常等, 但仍以外傷及退化為大宗。 一、臨床症狀 1. 脖子酸痛、僵硬、活動困難、無法後仰。 2. 單側或雙側的肩膀,上臂、前臂甚至手指放射痛或麻痺。 3. 手臂或掌間肌肉萎縮,指端無力。 4.  醫療護膝推薦 四肢輕癱甚至重癱、大小便失禁、呼吸麻痺導致死亡。 二、診斷工具 1. 頸椎動態性 X 光:評估頸椎的穩定度,骨刺的嚴重度,椎孔是否狹窄及椎間盤 的變化。 2. 神經傳導及肌電圖:判斷頸椎神經根病變及影響範圍,以便與周邊神經病變區 分。 諮詢電話:(03)492-3030 專人掛號專線:(03)493-1010 桃園縣平鎮市廣泰路 77 號 壢 新 凡 事 用 心 對 您 無 限 關 心 3. 電腦斷層加上脊髓攝影:因具侵犯性及易生併發症目前已少用。 4. 核磁共振造影(MRI):診斷的利器,若是保守治療無效或是相當明顯而嚴重的 症狀,臨床醫師則 醫療護膝推薦 會安排以便判斷是否需手術,且需手術幾節。 三、治療方式 1. 保守治療:如藥物、復健、整脊術、頸圈護具、局部注射。 2. 手術治療:一旦保守治療 4~6 週無效或神經症狀持續惡化為適應症,...

可增加鈉依賴型及非依賴型精胺酸運送。此種機轉需要核醣核酸( RNA ) 及蛋白質合成。這意味著轉送蛋白質本身或其他規範性之蛋白質之合成 增加 30。進階研究已指陳:透過細胞膜精胺酸吸收之刺激是藉由內毒素來引導

 人類PrP蛋白單體(左)與雙聚體(右)形式 1. 肌紅蛋白與血紅素肌紅蛋白(myoglobin, Mb)- 肌紅蛋白負責肌肉細胞內O2的輸送與儲存,屬功能性蛋白質,含153個胺基酸與血基質* 肌紅蛋白的結構* 由X光晶體繞射的結果研判得知,整個肌紅蛋白分子為球狀,摺疊十分緊密,其中75%為α-螺旋構造,血基質約位於蛋白分子的中心並以所含的Fe+2與O2接合進行輸送及儲存O2 - Kendrew因解出結構的貢獻而獲得1962年諾貝爾化學獎 血紅素(hemoglobin, Hb)- 血紅素在肺與組織細胞間擔任O2的輸送*血紅素具有四級構造*,由兩個α次單元與兩個 β次單元構成一個四面體的立體排列,組成的α次單元 (含有141個胺基酸)與β次單元(含有146個 精氨酸 )的分子中心,分別含有血基質可與O2接合 - Perutz因解出構造而與Kendrew同獲諾貝爾獎 胜肽可由其離子化行為加以區分胜肽僅具一個游離胺基與一個游離羧基,分別位於胜肽鏈狀結構兩端(圖3-15)。這些基團在胜肽中也如同它們在游離態時一樣可以離子化,但其解離常數不同於胺基酸,因為此時帶相反電荷之基團並非聯結在同一個α碳原子上。其他不在末端上的胺基酸之α-胺基與α-羧基均以肽鍵共價聯結在一起,因此無法離子化,也不會對胜肽之整體酸鹼行為作出任何貢獻。 顯示此四肽具有一個游離α-胺基、一個游離 α-羧基與兩個離子化 R 基團。在 pH 7.0 時可離子化基團以紅色表示。 四肽具生物活性的胜肽與多胜肽之大小差異甚鉅許多小分子胜肽在極低濃度就能發揮功效,如一些脊椎動物之激素(荷爾蒙)就是小分子胜肽。  較大一些的胜肽稱為小多肽或寡肽,如胰臟激素-胰島素由兩條多肽組成,一條含30個 胺基酸 殘基,另一條則為21個。 有些蛋白質由單一多肽鏈組成,但另一些稱為多次單元(multisubunit)蛋白質者,則由兩條或以上的多肽以非共價性鍵結聯結在一起(表3-2)。多次單元蛋白質中的每條個別多肽可能完全相同或不同,如果至少有兩個相同次單元組成之蛋白質稱為寡聚化 (oligomeric)蛋白質;而相同的次單元則被稱為一個原聚體(protomers)。 表 3-2 一些蛋白質之分子資料 有些蛋白質是由兩條或以上之多肽鏈以共價性方式鍵結在一起,例如胰島素的兩條多肽鏈是以雙硫鍵聯結在一起。 以及胰島素、升糖素皆可誘...

屬功能性蛋白質,含153個胺基酸與血基質* 肌紅蛋白的結構* 由X光晶體繞射的結果研判得知,整個肌紅蛋白分子為球狀,摺疊十分緊密,其中75%為α-螺旋構造,血基質約位於蛋白分子的中心並以所含的Fe+2與O2接合進行輸送及儲存O2

 此類研究衍生出利用分析特定蛋白質的 精氨酸 序列以建構演化關係的“分子演化學” 由分析細胞色素c建構的演化樹 1. 蛋白質表現生物功能時需與其它分子接合,此接合通常是緊密、專一、且會形成複合體,如調控基因表現的核酸蛋白或細胞辨識的醣蛋白與細胞膜上的受體蛋白或運輸蛋白等 此接合雖然與細胞的繁殖、生長與發育等不同的生理作用有關,但蛋白質與其它分子間的交互作用與專一辨識過程均十分相似 - 親和基(ligand)是與特定蛋白質產生專一性接合的分子,如酵素的受質、產物、輔因子、阻害劑或 活化劑,甚至運輸蛋白所輸送的物質等 2. 親和基的接合作用蛋白質與其親和基的接合通常具有專一性,此專一性來自於兩者構造的互補特性與兩者接合後可產生新的安定作用力 (lysine),它在其脂肪族支鏈末端ε位置帶有第二個一級胺基;精胺酸(arginine)具有一個帶正電的胍 基團;另外則是帶有咪唑基團之組胺酸 (histidine)。 帶負電(酸性)R 基團在 pH 7.0 時 R 基團帶有淨負電的兩個胺基酸為天冬胺酸(aspartate)與麩胺酸(glutamate),兩者均具有第二個羧基。 特殊 精氨酸 也具有重要功能 除了20種常見胺基酸之外,蛋白質序列中也可能含有由常見胺基酸殘基經化學修飾作用產生的特殊胺基酸殘基(圖3-8a);這些特殊胺基酸包括 4-羥基脯胺酸( 4-hydroxyproline ; 脯胺酸的衍生物) 與 5-羥基離胺酸(5-hydroxylysine;離胺酸的衍生物),前者出現於植物細胞壁蛋白質中,兩者也都存在於膠原蛋白(一種結締組織之纖維狀蛋白質)中。 6-N-甲基離胺酸(6-N-Methyllysine)是肌球蛋白(肌肉組織的收縮蛋白)的組成份之一 Anfinsen等人獲得1972年諾貝爾化學獎 9. 蛋白質立體構造的摺疊Anfinsen等人的研究結果提出“All of the information necessary for folding the peptidechain into its “native” structure is contained in the amino acid sequence of the peptide” 蛋白質特有構形的形成* Levinthal’s paradox (1968年) - 假設蛋白質A含有100個 精...

說明蛋白質的結構研究對建立演化關係的重要性 - 細胞色素c是粒線體電子傳遞鏈的成分,對細胞的存活極為重要 - 分析得自麵包酵母及人類等40多種不同來源的細胞色素c,雖然其蛋白質的一級構造不盡相同但卻有令人訝異的相似處

 Chapter 3胺基酸、胜肽與蛋白質Amino Acids, Peptides, and Proteins 蛋白質是胺基酸的聚合物,由每一個彼此相鄰的胺基酸殘基(amino acid residue)以一種特殊的共價性鍵結作聯結(「殘基」一詞反應出胺基酸彼此相結合時脫去一個水分子的事實)。 胺基酸具有共同之結構特徵 常見的20種胺基酸都是α- 胺基酸 ,它們的羧基與胺 基都是鍵結到同一個碳原子(即α碳)(見圖3-2)。這些胺基酸彼此之間的差異就在其支鏈R基團( R groups)上,其結構、大小與帶電性的差異也影響 到各種胺基酸在水中的溶解度。  除了甘胺酸之外,所有常見胺基酸的α碳原子上均鍵結了四種不同的基團:羧基、胺基、R基團與一個氫原子( 圖3-2 ) ; 因此α 碳原子是一個對掌中心 (chiral center)。 圖 3-2 胺基酸的一般結構。20種常見胺基酸已被賦予由三個英文字母組成的縮寫及以一個英文字母代表的符號,通常在表示蛋白質的胺基酸序列及組成時使用。 組成蛋白質的各種常見胺基酸 圖 3-3 α-胺基酸的立體異構化現象。 肌紅蛋白的結構與血紅素的α次單元或β次單元的結構均十分類似,且同樣具有攜氧的功能,極可能源自於一個共同的祖先 (一個原始的球蛋白)* 3. 以細胞色素c的研究為例比較不同來源的細胞色素c的胺基酸 胺基酸 序列,說明蛋白質的結構研究對建立演化關係的重要性 - 細胞色素c是粒線體電子傳遞鏈的成分,對細胞的存活極為重要 - 分析得自麵包酵母及人類等40多種不同來源的細胞色素c,雖然其蛋白質的一級構造不盡相同但卻有令人訝異的相似處 - 細胞色素c平均含有104個胺基酸,其中有28個完全相同*, 生物資訊之分析與歸納。 環狀胜狀 胺基酸 組成之偏妤性生物責訊在生物化學課程 中之應用 7 環狀胜肱胺基酸組成之偏妤性生物責訊在生物化學課程 中之應用 9圖六 各胺基酸出現在環狀序列中與形成雙硫鍵之半胱胺酸接續位置上之頻率。黑色柱狀圖為僅分析"單環"之結果。空白枉狀圖為未排際環交錯忖之結果" 環狀胜肱 胺基酸 組成之偏好性生物 責訊在生物化學課程 中之應用 1 ] 在 SWISS-PROT 內 的編號與蛋白質有關的描述 基因名原始文件所提供的關鍵字器官胞器作者標題參考文獻註解責料庫的參考責料註解的形式蛋質的註...

開啟了血管新生理論暨動脈硬化--內皮功能之間之新紀元 90。㆟類精氨酸之吸收及合成以及在各器官間之新陳代謝轉換關係業以㆒目了然 ( 詳見圖六 )91,92。㆒般而言,血漿㆗精氨酸維持恆定,它可從腎絲球過濾而從腎小管近端完全再吸收

  親和性層析法(affinity chromatography)則利用蛋白質結合親和力之差異加以分離。  管柱中之膠體顆粒上共價聯結了特定化學分子基團 (配位基),會與這些配位基作專一性結合之蛋白質分子留在管柱上,因此延滯了它們通過管柱的速度,藉此達到分離純化的效果(圖3-18c)。  圖3-18(c) 顯示親和性層析法利用蛋白質與固定相  胺基酸 基質上連接之特殊配位基間結合專一性能力之差異進行分離。會與固定相基質上交聯之特殊配位基作專一性結合之蛋白質分子會留在管柱上,不會結合的蛋白質則被緩衝液沖提出來。爾後再以含有游離配位基之緩衝液進行沖提,將結合在管柱上之蛋白質沖提出來,藉此達到純化的效果。 圖3-18(c) 蛋白質純化常用的三種管柱層析方法  最新改良的層析法是高效能液相層析法(high performance liquid chromatography;HPLC)。此方法利用高壓幫浦,搭配填充可抵抗高壓流動下造成 之碎裂力之高品質層析介質,以提高蛋白質分子在管柱中移動的速度。藉由層析時間的減少,HPLC 可有效限制蛋白質色帶的擴散分散現象,因而大幅提升解析度。  隨著每個純化步驟的完成, 胺基酸 蛋白質樣品含量與體積通常會隨之減少(表3-5),此時較適合以更複雜(且較昂貴)的管柱層析法加以分離。 蛋白質結構可分為數個層級蛋白質結構一般被定義為四個層級(圖3-16)描述整個多肽鏈中用以連結每個胺基酸殘基之共價鍵結 (主要是胜肽鍵與雙硫鍵)者稱為一級結構(primary structure),其主要組成元件即為胺基酸殘基之序列 二級結構(secondary structure)指的是由 精氨酸 殘基形成的一些特定的穩定排列方式,在蛋白質中會是一再重複出現的結構模式 三級結構(tertiary structure)描述的是多肽的三度空間摺疊 當一蛋白質具有兩個或以上的次單元,則其次單元在空間中之排列則稱為四級結構(quaternary structure) 顯示利用蛋白質之等電點差異進行分離。  先添加適當兩性電解質以製備 pH 值穩定均勻之膠體, 精氨酸 待測蛋白質混合樣品則置入膠體中之樣品槽,通以電流後各種蛋白質則進入膠體並開始緩慢移動;當移動到與其 pI 值相同之 pH 值才停止。 圖 3-21 等電焦集法。 表 3-6 一...