以木鏝刀鏝平。 2. 安裝銅條:底層水泥砂漿硬化後,依照設計於底層上劃出銅條的位置,以 長規尺作標準
施工前首將混凝土表面清洗,應去除雜物,經潤濕後塗刷一層水泥漿打底,再以1 :
2.5水泥砂漿塗刷。彩色硬化地坪於水泥粉刷後,視乾燥情形撒佈適量之彩色硬化劑加以整平後,再酌撒餘量之彩色硬化劑並以鐵鏝修飾。崁超耐磨木地板
崁銅條磨石子地板嵌銅條磨石子一般作為地坪飾面用,為防止大面積表面產生,裂痕,故嵌以黃銅條、鋁合金條或塑膠條作為接縫,其中塑膠條較易磨損,但因價格較廉,故亦為人們所樂用。銅條厚度普通為1.3~3.0㎜,寬10~12㎜,其格間以1.2m2以下為準。其施工程序如下述步驟。1.
粉刷底層:將粉刷底面清洗後,保留約12~15㎜的面層,塗1薄層純水泥砂漿,再以1:3的硬拌水泥砂漿打底,以木鏝刀鏝平。
2. 安裝銅條:底層水泥砂漿硬化後,依照設計於底層上劃出銅條的位置,以 長規尺作標準,用硬拌純水泥漿依適當分格固定銅條腳,安裝時須注意
平直方正。
3. 粉刷上度:銅條腳硬化後,粉刷上度。其所使用的水泥應估計需量,並依
照指定顏色加入著色劑,預先拌合備用,以求顏色的均勻劃一,依指定使用的石粒,其粒徑約2.4~12㎜。粉刷上度的拌合比約為
泥1份,石粒1.3份。為增強磨石面層與底面之黏著,宜先以水泥漿塗刷於底層上。
日式木構造通風行為 日式木構造除了本身在外牆有較多孔隙之透氣 路徑外,為了其居住之舒適性與溫溼度之控,在 建築各部位設置不同通風之構造型式,例如基座(勒 腳牆)設有通風口的格柵,有利於室內通風與避免地 板潮濕之效用;四周以大型的落地障子門,除可取 得較大的自然光源,並維持室內良好的通風;屋頂 內的排氣孔、室內木板天花,以及簷廊下木板天花 通風對流口設置等構造型式。上述通風機制,都是 可增進建築物理環境改善重要的方法。 富士貞吉於臺灣建築會誌第八輯第三號(富士 貞吉,1936),表對防熱住家的構造等相關研究 資料,其中提到促進室內換氣法,將居室地板提高 35cm至65cm高度,作為換氣通風的入口,為了防蟲鼠之侵入,並加入金屬網;另外也設置換氣孔,其 位置可設置在檐廊的天花板下,也可以窗戶上部或 山牆上方的氣窗作為換氣孔,如圖3,此乃利用樓板 外部較低溫的新鮮空氣引入室內,再利用熱浮力原 理,室內的空氣藉由較高處的開口產生對流換氣的 行為。依據木造住宅構法(飯塚五郎藏,山室 滋,1990)緣側在基座下方,離地面10m左右設有換氣 口,亦有防濕隔熱之用,如圖4;柳川賢次於構材劣 化的防止(柳川賢次,2001),利用超耐磨木地板其構造本身的特性,也對居家的通風換氣方式發表一些技術 和方法,如圖5所示。 日本建築學會(1993),對於木構造建築生物劣化 關聯的因子,發現構造與材料之乾燥度對木構造耐 久性能是一重要影響因子,文中指出木構造建物耐 久性能推測值因各部位構造材乾燥度而異。
室內風場 由於模組的開口率較為微小,不易引進較大 之風量,所以在本模擬分析之結果,室內的平均 速度變化約從0.067m/s至0.074m/s,差異不大,故 風速大小對於通風效率之影響並不顯著,將由速 度分佈圖之變化,來分析通風行為的優劣。 建築物的屋頂因受太陽照射之影響,壁面吸 收太陽的輻射熱,在屋頂、璧面周遭的空氣溫度 高、密度低,而室內其他位置為密度較高之冷空 氣。從冷空氣會流向熱空氣之原理,可以從模擬 結果之速度梯度分佈圖14、及圖15,觀察分析到 氣流速度沿壁面、天花周圍,有較大速度變化梯 度。 於模組1超耐磨木地板下方設置了進風口,但因室內 無對外之通風口,無法產生對流之效應。當模組 2、模組3於寢所的北向壁面上,增加約0.5%開口 率,形成通風路徑,帶動室內的空氣由地面往上 流動,尤其於室內木地板底部約30cm高的地方, 速度變化比其他位置較為明顯。 在模組4中,將木地板的進口率從3%提升到 6%,增加流量係數,較模組2及模組3,有較強之 對流,對流範圍也變大。
推薦連結:一些知識的分享
日式木構造通風行為 日式木構造除了本身在外牆有較多孔隙之透氣 路徑外,為了其居住之舒適性與溫溼度之控,在 建築各部位設置不同通風之構造型式,例如基座(勒 腳牆)設有通風口的格柵,有利於室內通風與避免地 板潮濕之效用;四周以大型的落地障子門,除可取 得較大的自然光源,並維持室內良好的通風;屋頂 內的排氣孔、室內木板天花,以及簷廊下木板天花 通風對流口設置等構造型式。上述通風機制,都是 可增進建築物理環境改善重要的方法。 富士貞吉於臺灣建築會誌第八輯第三號(富士 貞吉,1936),表對防熱住家的構造等相關研究 資料,其中提到促進室內換氣法,將居室地板提高 35cm至65cm高度,作為換氣通風的入口,為了防蟲鼠之侵入,並加入金屬網;另外也設置換氣孔,其 位置可設置在檐廊的天花板下,也可以窗戶上部或 山牆上方的氣窗作為換氣孔,如圖3,此乃利用樓板 外部較低溫的新鮮空氣引入室內,再利用熱浮力原 理,室內的空氣藉由較高處的開口產生對流換氣的 行為。依據木造住宅構法(飯塚五郎藏,山室 滋,1990)緣側在基座下方,離地面10m左右設有換氣 口,亦有防濕隔熱之用,如圖4;柳川賢次於構材劣 化的防止(柳川賢次,2001),利用超耐磨木地板其構造本身的特性,也對居家的通風換氣方式發表一些技術 和方法,如圖5所示。 日本建築學會(1993),對於木構造建築生物劣化 關聯的因子,發現構造與材料之乾燥度對木構造耐 久性能是一重要影響因子,文中指出木構造建物耐 久性能推測值因各部位構造材乾燥度而異。
室內風場 由於模組的開口率較為微小,不易引進較大 之風量,所以在本模擬分析之結果,室內的平均 速度變化約從0.067m/s至0.074m/s,差異不大,故 風速大小對於通風效率之影響並不顯著,將由速 度分佈圖之變化,來分析通風行為的優劣。 建築物的屋頂因受太陽照射之影響,壁面吸 收太陽的輻射熱,在屋頂、璧面周遭的空氣溫度 高、密度低,而室內其他位置為密度較高之冷空 氣。從冷空氣會流向熱空氣之原理,可以從模擬 結果之速度梯度分佈圖14、及圖15,觀察分析到 氣流速度沿壁面、天花周圍,有較大速度變化梯 度。 於模組1超耐磨木地板下方設置了進風口,但因室內 無對外之通風口,無法產生對流之效應。當模組 2、模組3於寢所的北向壁面上,增加約0.5%開口 率,形成通風路徑,帶動室內的空氣由地面往上 流動,尤其於室內木地板底部約30cm高的地方, 速度變化比其他位置較為明顯。 在模組4中,將木地板的進口率從3%提升到 6%,增加流量係數,較模組2及模組3,有較強之 對流,對流範圍也變大。
推薦連結:一些知識的分享
留言
張貼留言